Устойчивый к коррозии датчик влажности почвы, годный для дачной автоматики. Датчики влажности - как устроены и работают Индикаторы и регуляторы влажности грунта

Многие огородники и садоводы лишены возможности ежедневно ухаживать за посаженными овощами, ягодами, фруктовыми деревьями в силу загруженности по работе или во время отпуска. Тем не менее, растения нуждаются в своевременном поливе. С помощью простых автоматизированных систем можно добиться того, что почва на вашем участке будет сохранять необходимую и стабильную влажность на протяжении всего вашего отсутствия. Для построения огородной системы автополива потребуется основной контрольный элемент – датчик влажности почвы.

Датчик влажности

Датчики влажности также называют иногда влагомерами или сенсорами влажности. Почти все предлагаемые на рынке влагомеры почвы измеряют влажность резистивным способом. Это не совсем точный метод, потому что он не учитывает электролизные свойства измеряемого объекта. Показания прибора могут быть разными при одной и той же влажности грунта, но с разной кислотностью или содержанием солей. Но огородникам-экспериментаторам не столь важны абсолютные показания приборов, как относительные, которые можно настроить для исполнительного устройства подачи воды в определенных условиях.

Суть резистивного метода заключается в том, что прибор измеряет сопротивление между двумя проводниками, помещенными в грунт на расстоянии 2-3 см друг от друга. Это обычный омметр , который входит в любой цифровой или аналоговый тестер. Раньше такие инструменты называли авометрами .

Также существуют приборы со встроенным или выносным индикатором для оперативного контроля над состоянием почвы.

Легко сделать замер разницы проводимости электрического тока перед поливом и после полива на примере горшка с домашним растением алоэ. Показания до полива 101.0 кОм.

Показания после полива через 5 минут 12.65 кОм.

Но обычный тестер лишь покажет сопротивление участка почвы между электродами, но не сможет помочь в автополиве.

Принцип действия автоматики

В системах автополива обычно действует правило «поливай или не поливай». Как правило, никто не нуждается в регулировании силы напора воды. Это связано с использованием дорогостоящих управляемых клапанов и других, ненужных, технологически сложных, устройств.

Почти все предлагаемые на рынке датчики влажности, помимо двух электродов, имеют в своей конструкции компаратор. Это простейший аналого-цифровой прибор, который преобразует входящий сигнал в цифровую форму. То есть при установленном уровне влажности вы получите на его выходе единицу или ноль (0 или 5 вольт). Этот сигнал и станет исходным для последующего исполнительного устройства.

Для автополива наиболее рациональным будет использование в качестве исполнительного устройства электромагнитного клапана. Он включается в разрыв трубы и может также использоваться в системах микро-капельного орошения. Включается подачей напряжения 12 В.

Для простых систем, работающих по принципу « датчик сработал - вода пошла», достаточно использование компаратора LM393. Микросхема представляет собой сдвоенный операционный усилитель с возможностью получения на выходе командного сигнала при регулируемом уровне входного. Чип имеет дополнительный аналоговый выход, который можно подключить к программируемому контроллеру или тестеру. Приблизительный советский аналог сдвоенного компаратора LM393 - микросхема 521СА3.

На рисунке представлено готовое реле влажности вместе с датчиком в китайском исполнении всего за 1$.

Ниже представлен усиленный вариант, с выходным током 10А при переменном напряжении до 250 В, за 3-4$.

Системы автоматизации полива

Если вас интересует полноценная систем автополива, то необходимо задуматься о приобретении программируемого контроллера. Если участок небольшой, то достаточно установить 3-4 датчика влажности для разных типов полива. Например, сад нуждается в меньшем поливе, малина любит влагу, а для бахчи достаточно воды из почвы, за исключением чрезмерно засушливых периодов.

На основании собственных наблюдений и измерений датчиков влажности можно приблизительно рассчитать экономичность и эффективность подачи воды на участках. Процессоры позволяют вносить сезонные корректировки, могут использовать показания измерителей влажности, учитывают выпадение осадков, время года.

Некоторые датчики влажности почвы оснащены интерфейсом RJ-45 для подключения к сети. Прошивка процессора позволяет настроить систему так, что она будет оповещать о необходимости полива через социальные сети или SMS-сообщением. Это удобно в тех случаях, когда невозможно подключить автоматизированную систему полива, например, для комнатных растений.

Для системы автоматизации полива удобно использовать контроллеры с аналоговыми и контактными входами, которые соединяют все датчики и передают их показания по единой шине к компьютеру, планшету или мобильному телефону. Управление исполнительными приборами происходит через WEB-интерфейс. Наиболее распространены универсальные контроллеры:

  • MegaD-328;
  • Arduino;
  • Hunter;
  • Toro.

Это гибкие устройства, позволяющие точно настроить систему автополива и доверить ей полный контроль над садом и огородом.

Простая схема автоматизации полива

Простейшая система автоматизации полива состоит из датчика влажности и управляющего устройства. Можно изготовить датчик влажности почвы своими руками. Понадобится два гвоздя, резистор с сопротивлением 10 кОм и источник питания с выходным напряжением 5 В. Подойдет от мобильного телефона.

В качестве прибора, который выдаст команду к поливу можно использовать микросхему LM393 . Можно приобрести готовый узел или собрать его самостоятельно, тогда понадобятся:

  • резисторы 10 кОм – 2 шт;
  • резисторы 1 кОм – 2 шт;
  • резисторы 2 кОм – 3 шт;
  • переменный резистор 51-100 кОм – 1 шт;
  • светодиоды – 2 шт;
  • диод любой, не мощный – 1 шт;
  • транзистор, любой средней мощности PNP (например, КТ3107Г) – 1 шт;
  • конденсаторы 0.1 мк – 2 шт;
  • микросхема LM393 – 1 шт;
  • реле с порогом срабатывания 4 В;
  • монтажная плата.

Схема для сборки представлена ниже.

После сборки подключите модуль к блоку питания и датчику уровня влажности почвы. На выход компаратора LM393 подсоедините тестер. С помощью построечного резистора установите порог срабатывания. Со временем нужно будет его откорректировать, возможно, не один раз.

Принципиальная схема и распиновка компаратора LM393 представлена ниже.

Простейшая автоматизация готова. Достаточно подключить к замыкающим клеммам исполнительное устройство, например, электромагнитный клапан, включающий и отключающий подачу воды.

Исполнительные устройства автоматизации полива

Основным исполнительным устройством автоматизации полива является электронный клапан с регулировкой потока воды и без. Вторые дешевле, проще в обслуживании и управлении.

Существует множество управляемых кранов и других производителей.

Если на вашем участке случаются проблемы с подачей воды, приобретайте электромагнитные клапаны с датчиком потока. Это предотвратит выгорание соленоида при падении давления воды или прекращении водоснабжения.

Недостатки автоматических систем полива

Почва неоднородна и отличается по своему составу, поэтому один датчик влажности может показывать разные данные на соседних участках. Кроме того, некоторые участки затемняются деревьями и более влажные, чем те, которые расположены на солнечных местах. Также значительное влияние оказывает приближенность грунтовых вод, их уровень по отношению к горизонту.

Используя автоматизированную систему полива, следует учитывать ландшафт местности. Участок можно разбить на сектора. В каждом секторе установить один или более датчиков влажности и рассчитать для каждого собственный алгоритм работы. Это значительно усложнит систему и вряд ли удастся обойтись без контроллера, но впоследствии почти полностью избавит вас от траты времени на нелепое стояние со шлангом в руках под знойным солнцем. Почва будет наполняться влагой без вашего участия.

Построение эффективной системы автоматизированного полива не может основываться только на показаниях датчиков влажности почвы. Непременно следует дополнительно использовать температурные и световые сенсоры, учитывать физиологическую потребность в воде растений разных видов. Необходимо также учитывать сезонные изменения. Многие компании производящие комплексы автоматизации полива предлагают гибкое программное обеспечение для разных регионов, площадей и выращиваемых сельскохозяйственных культур.

Приобретая систему с датчиком влажности, не поддавайтесь на глупые маркетинговые слоганы: наши электроды покрыты золотом. Даже если это так, то вы лишь обогатите почву благородным металлом в процессе электролиза пластин и кошельки не очень честных бизнесменов.

Заключение

В данной статье рассказывалось о датчиках влажности почвы, которые являются основным контрольным элементом автоматического полива. А также был рассмотрен принцип действия системы автоматизации полива, которую можно приобрести в готовом виде или собрать самому. Простейшая система состоит из датчика влажности и управляющего устройства, схема сборки которой своими руками также была представлена в этой статье.

Прибор, которым измеряют уровень влажности, называется гигрометром или просто датчиком влажности. В повседневной жизни влажность выступает немаловажным параметром, и часто не только для самой обычной жизни, но и для различной техники, и для сельского хозяйства (влажность почвы) и много для чего еще.

В частности, от степени влажности воздуха немало зависит наше самочувствие. Особенно чувствительными к влажности являются метеозависимые люди, а также люди, страдающие гипертонической болезнью, бронхиальной астмой, заболеваниями сердечно-сосудистой системы.

При высокой сухости воздуха даже здоровые люди ощущают дискомфорт, сонливость, зуд и раздражение кожных покровов. Часто сухой воздух может спровоцировать заболевания дыхательной системы, начиная с ОРЗ и ОРВИ, и заканчивая даже пневмонией.

На предприятиях влажность воздуха способна влиять на сохранность продукции и оборудования, а в сельском хозяйстве однозначно влияние влажности почвы на плодородие и т. д. Здесь и спасает применение датчиков влажности — гигрометров .

Какие-то технические приборы изначально калибруются под строго требуемую важность, и иногда чтобы провести точную настройку прибора, важно располагать точным значением влажности в окружающей среде.

Влажность может измеряться несколькими из возможных величин:

    Для определения влажности как воздуха, так и других газов, измерения проводятся в граммах на кубометр, когда речь об абсолютном значении влажности, либо в единицах RH, когда речь о влажности относительной.

    Для измеряется влажности твердых тел или в жидкостях подходят измерения в процентах от массы исследуемых образцов.

    Для определения влажности плохо смешиваемых жидкостей, единицами измерения будут служить ppm (сколько частей воды приходится на 1000000 частей веса образца).

По принципу действия, гигрометры делятся на:

    емкостные;

    резистивные;

    термисторные;

    оптические;

    электронные.

Емкостные гигрометры, в самом простом случае, представляют собой конденсаторы с воздухом в качестве диэлектрика в зазоре. Известно, что у воздуха диэлектрическая проницаемость непосредственно связана с влажностью, а изменения влажности диэлектрика приводят и к изменениям в емкости воздушного конденсатора.

Более сложный вариант емкостного датчика влажности в воздушном зазоре содержит диэлектрик, с диэлектрической проницаемостью, могущей сильно меняться под влиянием на него влажности. Данный подход делает качество датчика лучше, чем просто с воздухом между обкладками конденсатора.

Второй вариант хорошо подходит для проведения измерений относительно содержания воды в твердых веществах. Исследуемый объект размещается между обкладками такого конденсатора, к примеру объектом может быть таблетка, а сам конденсатор присоединяется к колебательному контуру и к электронному генератору, при этом измеряется собственная частота полученного контура, и по измеренной частоте «вычисляется» емкость, полученная при внесении исследуемого образца.

Безусловно, данный метод обладает и некоторыми недостатками, например при влажности образца ниже 0.5% он будет неточным, кроме того, измеряемый образец должен быть очищен от частиц, имеющих высокую диэлектрическую проницаемость, к тому же важна и форма образца в процессе измерений, она не должна изменяться в ходе исследования.

Третий тип емкостного датчика влажности - это емкостный тонкопленочный гигрометр. Он включает в себя подложку, на которую нанесены два гребенчатых электрода. Гребенчатые электроды играют в данном случае роль обкладок. С целью термокомпенсации в датчик дополнительно вводят еще и два термодатчика.

Такой датчик включает в себя два электрода, которые нанесены на подложку, а поверх на сами электроды нанесен слой материала, который отличается достаточно малым сопротивлением, сильно, однако, меняющимся в зависимости от влажности.

Подходящим материалом в устройстве может выступать оксид алюминия. Данный оксид хорошо поглощает из внешней среды воду, при этом удельное сопротивление его заметно изменяется. В результате общее сопротивление цепи измерения такого датчика будет значительно зависеть от влажности. Так, об уровне влажности станет свидетельствовать величина протекающего тока. Достоинство датчиков такого типа - малая их цена.

Термисторный гигрометр состоит из пары одинаковых термисторов. К слову напомним, что — это нелинейный электронный компонент, сопротивление которого сильно зависит от его температуры.

Один из включенных в схему термисторов размещают в герметичной камере с сухим воздухом. А другой - в камере с отверстиями, через которые в нее поступает воздух с характерной влажностью, значение которой требуется измерить. Термисторы соединяют по мостовой схеме, на одну из диагоналей моста подается напряжение, а с другой диагонали считывают показания.

В случае, когда напряжение на выходных клеммах равно нулю, температуры обоих компонентов равны, следовательно одинакова и влажность. В случае, когда на выходе будет получено не нулевое напряжение, то это свидетельствует о наличии разности влажностей в камерах. Так, по значению полученного при измерениях напряжения определяют влажность.

У неискушенного исследователя может возникнуть справедливый вопрос, почему же температура термистора меняется при его взаимодействии с влажным воздухом? А дело все в том, что при увеличении влажности, с корпуса термистора начинает испаряться вода, при этом температура корпуса уменьшается, и чем выше влажность, тем более интенсивно происходит испарение, и тем стремительнее остывает термистор.

4) Оптический (конденсационный) датчик влажности

Этот вид датчиков наиболее точен. В основе работы оптического датчика влажности — явление связанной с понятием «точка росы». В момент достижения температурой точки росы, газообразная и жидкая фазы - в условии термодинамического равновесия.

Так, если взять стекло, и установит в газообразной среде, где температура в момент исследования выше точки росы, а затем начать процесс охлаждения данного стекла, то при конкретном значении температуры на поверхности стекла начнет образовываться водяной конденсат, это водяной пар станет переходить в жидкую фазу. Данная температура и будет как раз точкой росы.

Так вот, температура точки росы неразрывно связана и зависит от таких параметров как влажность и давление в окружающей среде. В результате, имея возможность измерения давления и температуры точки росы, получится легко определить и влажность. Этот принцип служит основой для функционирования оптических датчиков влажности.

Простейшая схема такого датчика состоит из светодиода, светящего на зеркальную поверхность. Зеркало же отражает свет, меняя его направление, и направляя на фотодетектор. В данном случае зеркало можно подогревать или охлаждать посредством специального устройства регулирования температуры высокой точности. Часто таким устройством выступает термоэлектрический насос. Конечно же, на зеркало устанавливают датчик для измерения температуры.

Прежде чем начать измерения, температуру зеркала выставляют на значение, которое заведомо выше температуры точки росы. Дальше осуществляют постепенное охлаждение зеркала. В момент, когда температура начнет пересекать точку росы, на поверхности зеркала тут же начнут конденсироваться капли воды, и световой луч от диода приломится из-за них, рассеется, а это приведет к уменьшению тока в цепи фотодетектора. Через обратную связь фотодетектор взаимодействует с регулятором температуры зеркала.

Так, опираясь на информацию, полученную в форме сигналов от фотодетектора, регулятор температуры станет удерживать температуру на поверхности зеркала точно равной точке росы, а термодатчик соответственно покажет температуру. Так, при известных давлении и температуре можно точно определить основные показатели влажности.

Оптический датчик влажности обладает самой высокой точностью, недостижимой другими типами датчиков, плюс отсутствие гистерезиса. Недостаток — самая высокая цена из всех, плюс большое потребление электроэнергии. К тому же необходимо следить за тем, чтобы зеркало было чистым.

Принцип работы электронного датчика влажности воздуха основан на изменении концентрации электролита, покрывающего собой любой электроизоляционный материал. Существуют такие приборы с автоматическим подогревом с привязкой к точке росы.

Часто точка росы измеряется над концентрированным раствором хлорида лития, который является очень чувствительным к минимальным изменениям влажности. Для максимального удобства такой гигрометр зачастую дополнительно оборудуют термометром. Этот прибор обладает высокой точностью и малой погрешностью. Он способен измерять влажность независимо от температуры окружающей среды.

Популярны и простые электронные гигрометры в форме двух электродов, которые просто втыкаются в почву, контролируя ее влажность по степени проводимости в зависимости от этой самой влажности. Такие сенсоры популярны у поклонников , поскольку можно легко настроить автоматический полив грядки или цветка в горшке, на случай если поливать в ручную некогда или не удобно.

Прежде чем купить датчик, подумайте, что вам нужно будет измерять, относительную или абсолютную влажность, воздуха или почвы, каков предвидится диапазон измерений, важен ли гистерезис, и какая нужна точность. Самый точный датчик — оптический. Обратите внимание на класс защиты IP, на диапазон рабочих температур, в зависимости от конкретных условий, где будет использоваться датчик, подойдут ли вам параметры.

Наконец я воплощаю эту задумку. Я собираюсь сделать датчик влажности почвы на базе Arduino, с ЖК-дисплеем 16х2, часами реального времени (показывают время даже при отключенном питании), датчиком температуры и SD-картой (дата-логгером).

Он может быть полезен в биотехнологических/ биологических/ ботанических проектах или проектах по сохранению растительности.

Суть проекта заключается в том, что я собираюсь сделать на базе Ардуино индикатор влажности почвы для комнатных растений, который можно собрать стационарным или портативным. Он сможет проводить измерения каждые Х миллисекунд, в зависимости от настроек.

Сделать зонды более долговечными можно путем пускания тока на короткий промежуток времени (дважды за 30 миллисекунд в моем случае) и оставлять их отключенными на определенное время (например, 1 800 000 миллисекунд = (30x60x1000) = 30 минут). Чтобы задать это значение, нужно изменить задержку в самом конце файла «project.ino».

Раз у нас имеется датчик, проводящий измерения каждые Х миллисекунд, нам нужно установить предельные значения. Значения будут меняться от пиковых 1000 до средних 400, чем ниже значение, тем ниже сопротивление. Так как зонды измеряют сопротивление между двумя штырями, нужно взять значение 400, или близкое к нему, за 100%-ную влажность. А большее значение сопротивления, 1000 или выше, за уровень влажности 0%. Значит, нам нужно установить соответствие значений 1000 – 400 как 0 – 100%.

Ниже мы рассмотрим, как это сделать своими руками.

Шаг 1: Собираем все необходимые материалы


Вам понадобятся:

  • Arduino Uno (например)
  • часы реального времени DS3231 с батарейкой
  • MicroSD + SD адаптер или SD-карта
  • SD-модуль
  • ЖК-дисплей 16х2
  • датчик уровня влажности почвы YL-69
  • провода
  • потенциометр, я использовал на 47 кОм, но лишь потому, что не нашел на 10 или 20 кОм в своей коллекции
  • макетная плата

Все эти компоненты вполне доступны и совсем недороги.

Шаг 2: Соединяем компоненты



Теперь нужно соединить компоненты та, как показано на картинке. Из-за того, что модели ЖК-дисплеев и часов реального времени различаются у каждого производителя, при соединении проводов сверяйтесь с инструкцией, чтобы быть уверенным, что все соединения верны.

ЖК-дисплей

На схеме и на картинке показано корректное подключение дисплея (с названиями выводов).

Схема подключения:

  1. VSS Ground, рельса GND на макетной плате
  2. VDD рельса +5V на макетной плате
  3. V0 средний штырек потенциометра (регулируемый вывод)
  4. RS пин 10 на плате Arduino
  5. RW земля, рельса GND на макетной плате
  6. E пин 9 на плате Arduino
  7. D0 оставляем не соединенным
  8. D1 оставляем не соединенным
  9. D2 оставляем не соединенным
  10. D3 оставляем не соединенным
  11. D4 пин 7 на плате Arduino
  12. D5 пин 6 на плате Arduino
  13. D6 пин 5на плате Arduino
  14. D7 пин 3на плате Arduino
  15. A рельса +5V на макетной плате
  16. K земля, рельса GND на макетной плате

Модуль SD-карты

Схема подключения:

  1. GND GND на макетной плате
  2. +5V рельса +5V на макетной плате
  3. CS пин 4 на плате Arduino
  4. MOSI пин 11 на плате Arduino
  5. SCK пин 13на плате Arduino
  6. MISO пин 12 на плате Arduino

Датчик YL-69

Мы будем подключать только три вывода:

  1. VCC пин 2 на плате Arduino
  2. GND рельса GND земли на макетной плате
  3. A0 аналоговый вывод A0

Вывод D0 мы использовать не будем, это цифровой вывод, в нашем проекте он не нужен.

Часы реального времени DS 3231 с батарейкой

Батарейка нужна, чтобы часы продолжали работу, когда отключены от сети. Мы будем использовать следующие выводы:

  1. SCL SCL на плате Arduino
  2. SDA SCA на плате Arduino
  3. VCC рельса +5V на макетной плате
  4. GND рельса GND на макетной плате

Потенциометр

Нужен, чтобы регулировать напряжение, идущее на ЖК-дисплей. Если на дисплее нет никаких цифр, а вы уверены, что они должны быть, попробуйте покрутить потенциометр. Если все подключено правильно, цифры появятся.

Шаг 3: Устанавливаем время

При первом включении часов реального времени нужно их настроить. Потом этого делать не придется, но первая настройка имеет критическое значение. Для настройки часов вам будет нужна библиотека Sodaq DS3231 .
Можно добавить ее через опцию «добавить библиотеку» в программе Arduino. Кликните «Добавить библиотеку» и выберите тип «3231», и вы ее увидите. Теперь ее нужно установить.

Если установочного файла нет, вы можете загрузить его из интернета.
Далее загрузите скетч «исправить/правка» и измените следующие значения:
«ДатаВремя» (2011, 11, 10, 15, 18, 0, 5)
в следующем порядке:
год, месяц, число, час, минуты, секунды и день недели (от 0 до 6)
установите текущие значения.
Установка времени завершена.

Шаг 4: Код

После того, как все соединения сделаны, нужен код.
Поэтому я сделал отдельный файл со скетчем и просто огромным количеством подробных комментариев в каждой секции действий. Так как в часах реального времени DS3231 есть функция измерения температуры, я решил использовать и ее.
Вам нужно установить еще одну библиотеку, «DS3231.rar».

Стандартная версия проекта сделана для работы с монитором последовательного порта и SD-картой, это значит, что без подключения последовательного монитора она просто не будет работать. Это не удобно, особенно если вы хотите сделать портативный датчик. Поэтому я написал другой скетч, не требующий подключения последовательного монитора и вообще не использующий его. Это сильно облегчает кодирование. В первом файле находится код для портативной версии, которая не использует последовательный порт.

Важная часть кода – строки, которые обозначаются тремя буквами в правом нижнем углу дисплея:

  • «I» от «initialized», значит, что SD-карта присутствует
  • «E» от «Error», значит, что SD-карта отсутствует
  • «F» от «False», «Ложь», значит, что файл недоступен, хотя карта присутствует

Эти три буквы прописаны, чтобы помочь вам диагностировать проблемы/ошибки, если они появятся.

Файлы

Шаг 5: Выбор источника питания

Вам нужен подходящий источник питания, его выбор зависит от того, как вы планируете использовать прибор в дальнейшем.

Вы можете использовать:

  • стандартный блок питания
  • 9В аккумулятор с проводным подключением/с проводами для подключения

Выбор питания очень важен для реализации проекта, так как если вы хотите сделать прибор стационарным, лучше будет использовать блок питания. Но если вы хотите сделать портативный измеритель, то ваш единственный вариант – аккумулятор.

Можно использовать маленькую хитрость – погасить дисплей, если он в данный момент не нужен. Для этого используйте/посмотрите/прочитайте сокращенный код, чтобы понять, как погасить дисплей. Я этого не делал, так как решил, что мне это не нужно. Возможно, такая опция нужна в портативной версии измерителя, я же собрал стационарный.

Шаг 6: Выбор SD-карты

Оказалось, что не все SD-карты работают с моим SD-модулем.

Исходя из своего жизненного опыта, я могу с уверенностью ответить на два вопроса:

  1. А они все подходят для измерителя? – нет, не все. Некоторые просто не взаимодействуют с определенным модулем. Оказалось, что все карты, не взаимодействующие с моим модулем, стандарта SDHC. Стандартные и микро-SD карты работают нормально, другие не работают совсем или работают только для чтения (данные не записываются) и настройки даты и времени слетают при каждом отсоединении карты от модуля.
  2. Есть разница в использовании SD-карты или микро SD-карты с адаптером? – нет, работают одинаково.

На этом я завершаю свое руководство по этому проекту.

Шаг 7: Продолжаем!

Я продолжаю дорабатывать свой проект, и решил сделать для измерителя деревянный корпус, и еще печатную плату.

Шаг 8: Экспериментальная печатная плата (не завершено, может не работать)



Для соединения всех компонентов с использованием минимального числа проводов я решил использовать печатную/макетную плату. Я так решил потому, что плат у меня много, а проводов мало. Смысла покупать новые макетные платы, когда я могу сделать печатную, я не вижу. Так как плата у меня односторонняя, провода для соединений с нижней стороной все-таки будут нужны.

Свтодиод включается при необходимости полива растений
Очень низкий ток потребления от батареи 3 В

Принципиальная схема:

Перечень компонентов:

Резисторы 470 кОм ¼ Вт

Керметный или угольный
подстроечный резистор 47 кОм ½ Вт

Резистор 100 кОм ¼ Вт

Резистор 3.3 кОм ¼ Вт

Резистор 15 кОм ¼ Вт

Резистор 100 Ом ¼ Вт

Лавсановый конденсатор 1 нФ 63 В

Лавсановый конденсатор 330 нФ 63 В

Электролитические конденсаторы 10 мкФ 25 В

Красный светодиод диаметром 5 мм

Электроды (См. замечания)

Батарея 3 В (2 батареи типоразмера AA, N или AAA,
соединенные последовательно)

Назначение устройства:

Схема предназначена для того, чтобы подавать сигнал, если растения нуждаются в поливе. Светодиод начинает мигать, если почва в цветочном горшке слишком пересохла, и гаснет при увеличении влажности. Подстроечный резистор R2 позволяет адаптировать чувствительность схемы под различные типы грунта, размеры цветочного горшка и виды электродов.

Развитие схемы:

Это небольшое устройство пользовалось большим успехом у любителей электроники на протяжении многих лет, начиная с 1999 г. Тем не менее, переписываясь все эти годы со многими радиолюбителями, я понял, что некоторые критические замечания и предложения должны быть учтены. Схема была усовершенствована за счет добавления в нее четырех резисторов, двух конденсаторов и одного транзистора. В результате устройство стало проще в настройке и устойчивее в работе, а яркость свечения удалось увеличить, не используя сверхярких светодиодов.
Было проведено много опытов с различными цветочными горшками и различными датчиками. И хотя, как несложно себе представить, цветочные горшки и электроды сильно отличались друг от друга, сопротивление между двумя электродами, погруженными в почву на 60 мм на расстоянии порядка 50 мм, всегда находилось в пределах 500…1000 Ом при сухой почве, и 3000…5000 Ом при влажной

Работа схемы:

Микросхема IC1A и связанные с ней R1 и C1 образуют генератор прямоугольных импульсов с частотой 2 кГц. Через подстраиваемый делитель R2/R3 импульсы поступают на вход вентиля IC1B. При низком сопротивлении между электродами (т.е., если влаги в цветочном горшке достаточно) конденсатор C2 шунтирует вход IC1B на землю, и на выходе IC1B постоянно присутствует высокий уровень напряжения. Вентиль IC1C инвертирует выходной сигнал IC1B. Таким образом, вход IC1D оказывается блокированным низким уровнем напряжения, и светодиод, соответственно, выключен.
При высыхании почвы в горшке, сопротивление между электродами возрастает, и C2 перестает препятствовать поступлению импульсов на вход IC1B. Пройдя через IC1C, импульсы 2 кГц попадают на вход блокировки генератора, собранного на микросхеме IC1D и окружающих его компонентах. IC1D начинает генерировать короткие импульсы, включающие светодиод через транзистор Q1. Вспышки светодиода указывают на необходимость полива растения.
На базу транзистора Q1 подаются редкие пачки коротких отрицательных импульсов частотой 2 кГц, вырезанные из входных импульсов. Следовательно, и светодиод вспыхивает 2000 раз в секунду, однако человеческий глаз воспринимает такие частые вспышки как постоянное свечение.

Замечания:

  • Для предотвращения окисления электродов используется их питание прямоугольными импульсами.
  • Электроды изготавливаются из двух отрезков зачищенного одножильного провода, диаметром 1 мм и длиной 60 мм. Можно использовать провод, применяемый для прокладки электропроводки.
  • Электроды необходимо полностью погрузить в землю на расстоянии 30…50 мм друг от друга. Материал электродов, размеры и расстояние между ними, в целом, не имеют большого значения.
  • Потребление тока порядка 150 мкА при выключенном светодиоде, и 3 мА при включении светодиода на 0.1 секунду каждые 2 секунды, позволяет устройству работать годами от одного комплекта батарей.
  • При таком небольшом токе потребления в выключателе питания просто нет необходимости. Если, все же, возникнет желание выключить схему, достаточно закоротить электроды.
  • 2 кГц с выхода первого генератора можно проверить без пробника или осциллографа. Их можно просто услышать, если подсоединить электрод Р2 ко входу усилителя низкой частоты с динамиком, а если есть древний высокоомный наушник ТОН-2, то можно обойтись и без усилителя.
  • Схема собрана четко по мануалу и рабочая на 100%!!! ...так что если вдруг "НЕ работает", то это просто неправильная сборка или детали. Честно говоря, до последнего не верил, что "рабочая".
  • Вопрос к спецам!!! Как можно приладить в качестве исполнительного устр-ва помпу на 12В постоянки с потреблением 0.6А и пусковым 1.4А?!
  • Sobos КУДА приладить? Чем управлять?.... Формулируйте вопрос ЧЁТКО.
  • В данной схеме (полное описание http://www..html?di=59789) индикатором ее работы является светодиод, который загорается при "сухом грунте". Есть большое желание автоматически включать помпу полива (12В постоянки с потреблением 0.6А и пусковым 1.4А) вместе с включением этого светодиода, каким образом изменить или "достроить" схему, чтобы это реализовать.
  • ...может хоть какие-нибудь мысли у кого-то есть?!
  • Установите вместо светодиода оптореле или оптосимистор. Дозу воды можно регулировать таймером или расположением датчик/точка полива.
  • Странно, схему собрал и она прекрасно работает но только светодиод "при необходимости полива" полноценно мерцает с частотой приблизительно 2кГц, а не горит постоянно как говорят некоторые форумчане. Что в свою очередь обеспечивает эконимию при использовании батареек. А также немаловажно, что при таком низком питании электроды в земле мало подвергаются коррозии особенно анод. И ещё один момент при определенном уровне влажности светодиод начинает еле еле светиться и так может продолжаться длительное время, что не позволило мне использовать эту схему для включения помпы. Думаю, что для надёжного включения помпы нужен какой-то определитель импульсов указанной частоты поступающих с этой схемы и дающий "команду" на управление нагрузкой. Прошу СПЕЦОВ подсказать схему реализации такого девайса. Хочу на основе этой схемы осуществить автополив на даче.
  • Очень перспективная по своей "экономике" схема которую необходимо доработать и использовать на садовых участках или например на работе, что очень актуально когда выходные или отпуск, а также дома для автоматического полива цветов.
  • всегда находилось в пределах 500…1000 Ом при сухой почве, и 3000…5000 Ом при влажной - в смысле - наоборот!!??
  • Помойму фигня это. Со временем на электродах откладываются соли и система срабатывает не вовремя. Пару лет назад занимался этим, только делал на двух транзисторах по схеме из журнала МК. На неделю хватало, а дальше смещалось. Срабатывал насос и не отключался, заливая цветок. В сети встречал схемы на переменном токе, вот их думаю следует попробовать.
  • Доброго времени суток!!! Как по мне любая затея что-то создать это уже неплохо. - Что касается установки системы на даче - я бы посоветовал включить насос через реле времени (стоит копейки во многих магазинах электроабарудования) настроить его на выключение через время от включения. Таким образом когда ваша система заклинит (ну всякое бывает) то насос отключится через время гарантировано достаточное для полива (подберете опытным путем). - http://tuxgraphics.org/electronics/201006/automatic-flower-watering-II.shtml Вот неплохая вещ, конкретно этую схему не собирал, юзал только связь с интернетом. Немного глюкавое (не факт что мои ручки очень прямые), но все работает.
  • Я собрал схемы для полива но не для этой которая обсуждается в этой теме. Собранные работают одна как и говорилось выше по времени включения помпы, другая, что очень перспективно по уровню в поддоне где закачивается вода непосредственно в поддон. Для растений это самый оптимальный вариант. Но суть вопроса в том, чтобы адаптировать указанную схему. Лишь только по причине даже того, что анод в земле почти не разрушается как при реализации других схем. Так, что прошу подсказать как отследить по частоте импульсов, чтобы включить исполнительное устройство. Проблема ещё усугубляется тем, что светодиод может "тлеть" еле-еле определённое время, а потом только включиться в импульсный режим.
  • Ответ на заданный ранее вопрос, по доработке схемы контроля влажности почвы, получен на другом форуме и проверен на 100% работоспособность:) Если кого интересует пишите в личку.
  • К чему такая конфиденциальность и не указать сразу ссылку на форум. Вот, например, на этом форуме http://forum.homecitrus.ru/index.php?showtopic=8535&st=100 практически задача решена на МК, а на логике решена и мной опробована. Только для того чтоб понять читать надо с начала «книги», а не с конца. Это я пишу заранее для тех, кто прочтет кусок текста и начинает заваливать вопросами. :eek:
  • Ссылка http://radiokot.ru/forum/viewtopic.php?f=1&t=63260 не была сразу дана по причине того, что бы это не рассматривалось как реклама.
  • для [B]Vell65
  • http://oldoctober.com/ru/automatic_watering/#5
  • Это уже пройденный этап. Задача решена другой схемой. В качестве инфрмации. Нижняя улучшенная схема имеет ошибки, горят сопротивления. Печатка на томже сайте выполнена без ошибок. При тестировании схемы были выявлены следующие недостатки: 1. Включается только один раз в сутки, когда уже завяли помидоры, а про огурцы лучше вообще промолчать. А им как раз кода пекло солнышко необходим был [B]капельный полив под корень ведь растения в сильную жару испаряет большое количество влаги особенно огурцы. 2. Не предусмотрена защита от ложного включения когда например ночью фотоэлемент освещается фарами или молнией и происходит срабатывание насоса тогда когда растения спят и им полив не нужен да и ночные включения насоса не способствует здоровому сну домочадцев.
  • Убираем фотодатчик, смотрите первый вариант схемы где он отсутствует, элементы временной цепи генератора импульсов подбираем как вам удобно. У меня R1=3,9 Мом. R8 которое 22м нет. R7=5,1 Мом. Тогда насос включается при сухой почве, на время пока не намокнет датчик. Я взял устройство как пример автомата полива. Огромное спасибо автору.

Соединяем Arduino с датчиком влажности почвы FC-28, чтобы определить, когда ваша почва под растениями нуждается в воде.

В этой статье мы собираемся использовать датчик влажности почвы FC-28 с Ардуино. Этот датчик измеряет объемное содержание воды в почве и дает нам уровень влаги. Датчик дает нам на выходе аналоговые и цифровые данное. Мы собираемся подключить его в обоих режимах.

Датчик влажности почвы состоит из двух датчиков, которые используются для измерения объемного содержания воды. Два зонда позволяют току пройти через почву, которая дает значение сопротивления, что позволяет в итоге измерить значение влаги.

Когда есть вода, почва будет проводить больше электричества, а это значит, что будет меньше сопротивление. Сухая почва плохо проводит электричество, поэтому когда воды меньше, почва проводит меньше электричества, а это значит, что сопротивление будет больше.

Датчик FC-28 можно соединить в аналоговом и цифровом режимах. Сначала мы подключим его в аналоговом режиме, а затем в цифровом.

Спецификация

Спецификации датчика влажности почвы FC-28:

  • входное напряжение: 3.3–5V
  • выходное напряжение: 0–4.2V
  • входной ток: 35mA
  • выходной сигнал: аналоговый и цифровой

Распиновка

Датчик влажности почвы FC-28 имеет четыре контакта:

  • VCC: питание
  • A0: аналоговый выход
  • D0: цифровой выход
  • GND: земля

Модуль также содержит потенциометр, который установит пороговое значение. Это пороговое значение будет сравниваться на компараторе LM393. Светодиод будет нам сигнализировать значение выше или ниже порогового.

Аналоговый режим

Для подключения датчика в аналоговом режиме нам потребуется использовать аналоговый выход датчика. Датчик влажности почвы FC-28 принимает аналоговые выходные значения от 0 до 1023.

Влажность измеряется в процентах, поэтому мы сопоставим эти значения от 0 до 100, а затем покажем их на последовательном мониторе (serial monitor). Вы можете установить различные значения влаги и повернуть водяную помпу "включено-выключено" согласно этим значениям.

Электрическая схема

Подключите датчик влажности почвы FC-28 к Ардуино следующим образом:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • A0 FC-28 → A0 Arduino

Код для аналогового выхода

Для аналогового выхода мы пишем такой код:

Int sensor_pin = A0; int output_value ; void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); } void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,0,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Объяснение кода

Прежде всего, мы определили две переменные: одну для контакта датчика влажности почвы, а другую для хранения выхода датчика.

Int sensor_pin = A0; int output_value ;

В функции setup, команда Serial.begin(9600) поможет в общении между Arduino и серийным монитором. После этого, мы напечатаем "Reading From the Sensor ...” (англ. - считываем с датчика) на обычном дисплее.

Void setup() { Serial.begin(9600); Serial.println("Reading From the Sensor ..."); delay(2000); }

В функции цикла, мы прочитаем значение от аналогового выхода датчика и сохраним значение в переменной output_value . Затем мы сопоставим выходные значения с 0-100, потому что влажность измеряется в процентах. Когда мы брали показания с сухого грунта, значение датчика было 550, а во влажном грунте значение датчика было 10. Мы сопоставили эти значения, чтобы получить значение влаги. После этого мы напечатали эти значения на последовательном мониторе.

void loop() { output_value= analogRead(sensor_pin); output_value = map(output_value,550,10,0,100); Serial.print("Mositure: "); Serial.print(output_value); Serial.println("%"); delay(1000); }

Цифровой режим

Для подключения датчика влажности почвы FC-28 в цифровом режиме мы подключим цифровой выход датчика к цифровому контакту Arduino.

Модуль датчика содержит потенциометр, который использован для того чтобы установить пороговое значение. Пороговое значение после этого сравнивается со значением выхода датчика используя компаратор LM393, который помещен на модуле датчика FC-28. Компаратор LM393 сравнивает значение выхода датчика и пороговое значение, и после этого дает нам выходное значение через цифровой вывод.

Когда значение датчика больше чем пороговое значение, цифровой выход передаст нам 5В, и загорится светодиод датчика. В противном случае, когда значение датчика будет меньше чем это пороговое значение на цифровой вывод передастся 0В и светодиод не загорится.

Электрическая схема

Соединения для датчика влажности почвы FC-28 и Ардуино в цифровом режиме следующие:

  • VCC FC-28 → 5V Arduino
  • GND FC-28 → GND Arduino
  • D0 FC-28 → Пин 12 Arduino
  • Светодиод положительный → Вывод 13 Ардуино
  • Светодиод минус → GND Ардуино

Код для цифрового режима

Код для цифрового режима ниже:

Int led_pin =13; int sensor_pin =8; void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); } void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

Объяснение кода

Прежде всего, мы инициализировали 2 переменные для соединения вывода светодиода и цифрового вывода датчика.

Int led_pin = 13; int sensor_pin = 8;

В функции setup мы объявляем пин светодиода как пин выхода, потому что мы включим светодиод через него. Мы объявили пин датчика как входной пин, потому как Ардуино будет принимать значения от датчика через этот вывод.

Void setup() { pinMode(led_pin, OUTPUT); pinMode(sensor_pin, INPUT); }

В функции цикла, мы считываем с вывода датчика. Если значение более высокое чем пороговое значение, то включится светодиод. Если значение датчика будет ниже порогового значения, то индикатор погаснет.

Void loop() { if(digitalRead(sensor_pin) == HIGH){ digitalWrite(led_pin, HIGH); } else { digitalWrite(led_pin, LOW); delay(1000); } }

На этом вводный урок по работе с датчиком FC-28 для Ардуино мы завершаем. Успешных вам проектов.