Специфические элементы сенсорных систем рецепторы их классификация. Физиология сенсорных систем

  • А - слуховые рецепторы; Б, В - слуховая проекционная область; Д - пищевой центр; Е - двигательные цементы коры; Ж - подкорковые двигательные аппараты.
  • Рецептор - периферическая специализиро­ванная часть анализатора, посредством которой воздействие раздражителей внешнего мира и внутренней среды организма трансформируется в процесс нервного возбуждения. Анализатором (по И.П.Павлову, или сенсорной системой ) называют часть нервной системы, состоящую из воспринимающих элементов - рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию.

    Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы).

    Экстерорецепторы - рецепторы, воспринимающие раздражение из окружающей среды. К экстерорецепторам относятся: слуховые, зрительные, обонятельные, вкусовые, осязательные.

    Интерорецепторы - рецепторы, воспринимающие раздражения из внутренней среды организма. К интерорецепторам относятся: вестибулорецепторы, проприорецепторы (рецепторы опорно-двигательного аппарата), атакже висцерорецепторы (сигнализирующие о состоянии внутренних органов и расположенные в стенках сосудов, внутренних органах, мышцах, суставах, костях скелета и пр.).

    В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на:

    механорецепторы - рецепторы, воспринимающие механические раздражения. К ним относятся тактильные рецепторы кожи и слизистых оболочек;

    барорецепторы - рецепторы, расположенные в стенках кровеносных сосудов и реагирующие на изменение кровяного давления;

    фонорецепторы - рецепторы, воспринимающие звуковые раздражения;

    ноцицептивные рецепторы - болевые рецепторы;

    отолитовые рецепторы - рецепторы обеспечивающие восприятие гравитации и изменения положения тела в пространстве;

    хеморецепторы - рецепторы, реагирующие на воздействие каких-либо химических веществ;

    осморецепторы - рецепторы, воспринимающие изменения осмотического давления;

    терморецепторы - рецепторы, воспринимающие изменения температуры как внутри организма, так и окружающей его среды;

    фоторецепторы - рецепторы, расположенные в сетчатке глаза и воспринимающие световые раздражители;

    проприорецепторы - рецепторы, расположенные в скелетных мышцах и сухожилиях и сигнализирующие о тонусе мышц.

    Процесс преобразование энергии внешнего раздражения в рецепторный сигнал включает в себя три основные этапа:

    а) взаимодействие стимула, то есть молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки;

    б) внутриклеточные процессы усиления и передачи сенсорного стимула в пределах рецепторной клетки;

    в) открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала ).

    Определенное множество рецепторов, связанных с отдельным афферентным волокном, называется рецептивным полем .

    Область расположения рецепторов, раздражение которых вызывает определенный рефлекс (например, раздражение слизистой оболочки носа - чихание) называют рефлексогенной зоной .

    ЖЕЛЕЗА

    Железа представляет собой орган, паренхима которого сформирована из высокодифференцированных железистых клеток (гландулоцитов), основная функция которых – секреция.

    Секреция – процесс образования в клетке и последующего выделения специфического продукта (секрета).

    В зависимости от типа секреции, железы подраз­деляются на экзокринные, эндокринные и смешанные.

    Экзокринная железа состоит из секреторного отдела – экзокриноцитов, вырабатывающих различные секреты, и протоков выводящих эти секреты (например, потовые, сальные железы, железы кишечника и воздухоносных путей).

    Эндокрин­ная железа не имеет выводных протоков и выделяют синтези­руемые ими продукты (гормоны) непосредственно в межклеточные простран­ства, откуда они поступают в кровь и лимфу.

    Смешанные железы состоят из экзо- и эндокринных отделов, присутствующих в одном органе, например поджелудочная железа.

    МЫШЦА

    Мышцы у всех высших животных являются важнейшими исполнительными (рабочими) органами – эффекторами .

    Иннервация скелетных мышц осуществляется α-мотонейронами спинного мозга или передних отделов мозгового ствола. Аксон мотонейрона проходит в составе периферических нервов до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка контактирует на одном мышечном волокне, образуя нервно-мышечный холинергический синапс. Результатом выброса его медиатора (ацетилхолина) является возникновение электрического потенциала концевой пластинки, способного перерастать в ПД мышечного волокна.

    Комплекс, включающий один мотонейрон и иннервируемые ими мышечные волокна, сокращающиеся одновременно, называют двигательной единицей (ДЕ). В свою очередь, несколько мотонейронов, иннервирующих одну и ту же мышцу, образуют мотонейронный пул . В его состав могут входить мотонейроны нескольких соседних сегметов. В связи с тем, что возбудимость мотонейронов одного пула неодинакова, при слабых раздражениях возбуждается только часть из них. Это влечет за собой сокращение лишь части мышечных волокон (неполное сокращение мышцы). С усилением раздражения в реакцию вовлекаются все большее количество двигательных единиц и в итоге все мышечные волокна мышцы сокращаются (максимальное сокращение).

    По морфофункциональным свойствам двигательные единицы делятся на 3 типа:

    1. Медленные неутомляемые ДЕ. Мотонейроны имеют наиболее низкий порог активации, способны поддерживать устойчивую частоту разрядов в течение десятков минут (т.е. неутомляемы). Мышечные волокна развивают небольшую силу при сокращении в связи с наличием в них наименьшего количества сократительных белков – миофибрилл. Это так называемые «красные волокна» (цвет обусловлен хорошим развитием капиллярной сети и небольшим количеством миофибрилл). Скорость сокращения этих волокон в 1,5 – 2 раза меньше, чем быстрых. Они неутомляемы благодаря хорошо развитой капиллярной сети, большому количеству митохондрий и высокой активности окислительных ферментов.

    Сенсорные рецепторы - это специализированные (часто нервные) клетки, ответственные за преобразование и передачу информации. Как и обычные нервные клетки, они имеют дендриты и один или более аксонов. Рецепторы специализированы в соответствии с той энергией среды.

    на которую они реагируют. Например, фоторецепторы содержат пигменты, которые химически изменяются под действием света, и при такой стимуляции возникает электрический потенциал. В механорецепторах происходят электрохимические изменения вследствие деформации мембраны клетки. Преобразование энергии обычно совершается в теле клетки, и для всех рецепторов характерно, что энергия окружающей среды превращается в градуальный электрический потенциал, называемый генераторным потенциалом, который обычно пропорционален интенсивности стимуляции рецептора. Когда генераторный потенциал достигает определенного порогового уровня, он запускает потенциал действия, который бежит по


    аксону рецепторной клетки. В этом заключается передаточная часть сенсорного процесса, причем информация обычно кодируется так, что, чем сильнее стимул, тем выше частота потенциалов действия. В отсутствие стимуляции генераторный потенциал постепенно снижается до уровня покоя. Когда он падает ниже порогового значения, потенциалы действия перестают генерироваться. При возобновлении стимуляции может возникнуть короткая задержка (латентный период), пока генераторный потенциал возрастает от уровня покоя до порогового. При прерывистой стимуляции он ритмически повышается и понижается, генерируя залпы потенциалов действия. Однако, если частота прерывистой стимуляции достаточно высока, генераторный потенциал может не успевать снизиться в перерывах между стимулами, и тогда генерация потенциалов действия станет непрерывной. Этим объясняется то, что при очень высокой частоте прерывистой стимуляции мы не способны отличать ее от непрерывной. Этот феномен слияния мельканий присущ всем органам чувств, что наиболее очевидно в случае зрения. Тот факт, что быстро мелькающий свет вызывает такое же зрительное ощущение, что и постоянный, делает возможным телевидение и кино.

    Потенциалы действия, передающие сенсорную информацию, ничем не отличаются от любых других нервных импульсов. Их величина определяется размерами аксона, а частота - силой стимуляции. Каждый тип рецепторов посылает импульсы прямо или опосредованно в определенный отдел мозга. Испытываемые ощущения зависят не от типа рецептора или сообщений, которые он посылает, а от той части


    мозга, которая принимает эти сообщения. От головного мозга зависит также локализация ощущения. Так, например, при боли нервные волокна от кисти посылают сигналы в одну часть мозга, от предплечья - в другую и т.п. «Боль», испытываемая мозгом, локализуется в той части тела, откуда пришло сообщение. Это явление иллюстрируется сообщениями людей, перенесших ампутацию конечностей. которые жалуются на болевые ощущения, идущие, как им кажется, от удаленной (фантомной) конечности. Раздражение перерезанных нервных окончаний посылает импульсы в те части мозга, которые были связаны с ампутированной конечностью. Мозг истолковывает поступающие сигналы как идущие от утраченной конечности, и возникающие ощущения зависят от того, какой нерв раздражен. От такой фантомной конечности могут приходить также ощущения тепла, холода или прикосновения.

    Мышцы и железы

    Нервная система управляет поведением и до некоторой степени внутренней средой животного (см. гл. 15). Это управление производится приказами, отдаваемыми мышцам и железам.

    В мышечных клетках имеются сложные белковые молекулы, способные к сокращению и расслаблению. Нервные окончания связаны с мышцами через синапсы, сходные с теми, какими соединены друг с другом нейроны. Придя в нервно-мышечное соединение, нервные импульсы вызывают электрические потенциалы, заставляющие мышцу сокращаться. Ее расслабление возникает при отсутствии стимуляции. Сокращаясь, мышца укорачивается, если этому не препятствует удерживание обоих ее концов. При расслаблении мышца может удлиниться, но только если ее растягивают другие мышцы или какая-нибудь внешняя сила. Мышцы обычно расположены антагонистическими, противодействующими друг другу группами. У некоторых беспозвоночных, например у кольчатых червей, мышечному сокращению может препятствовать гидростати-

    ческое давление, повышающееся при сжатии мускулатурой части полости тела. Это давление заставляет мышцы удлиняться при расслаблении. У других беспозвоночных, например членистоногих, мышцы находятся внутри жесткого наружного скелета, который образует не-


    обходимую систему рычагов для антагонистических групп мышц (рис. 11.5). У позвоночных животных такой системой служит внутренний скелет, а мышцы расположены так, что тянут его части в противоположные стороны (рис. 11.6). Одна группа мышц расслабляется, когда другая сокращается.

    Некоторые железы находятся под нервным контролем. У позвоночных к ним относятся, например, слюнные железы, мозговая часть надпочечников, вырабатывающая адреналин, и задняя доля гипофиза, в которой образуется несколько важных гормонов. Секреты этих желез могут влиять на поведение косвенно, воздействуя на внутреннее состояние животного, как будет показано в конце этой главы.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Введение

    Среди учебных дисциплин естественнонаучного цикла физиология центральной нервной системы занимает особое место, поскольку именно она интегрирует известные знания об устройстве отдельных нейронов и структур мозга с их деятельностью, основанной на генетически запрограммированных механизмах, позволяющих реализовать готовые врожденные программы, но, в то же время, предоставляющих возможность изменять характер нейронных процессов, приспосабливая его к характеру влияний окружающего мира.

    В современной учебной физиологической литературе изучаемые процессы принято рассматривать одновременно на нескольких уровнях организации: молекулярном, клеточном, органном и организменном: только при таком подходе в конечном итоге может сложиться целостное представление об изучаемом явлении.

    В физиологии центральной нервной системы крайне важным является также выяснение важнейших принципов ее функционирования, что позволяет преодолевать естественные трудности исследования такого сложного объекта, как человеческий мозг.

    В задачи центральной нервной системы входит как регуляция важнейших процессов жизнедеятельности организма, так и организация поведения, причем и то, и другое нервная система должна постоянно координировать и приспосабливать к непрерывно изменяющимся условиям окружающего мира. Решая эти задачи, нервная система тесно взаимодействует с эндокринной системой, а во многих случаях нервная и эндокринная регуляции практически интегрируются в сложных нейроэндокринных механизмах управления.

    Рефлекторная дуга

    Рефлекторная дуга - это цепь нейронов от периферического рецептора через центральную нервную систему к периферическому эффектору. Элементами рефлекторной дуги являются периферический рецептор, афферентный путь, один или больше вставочных нейронов, эфферентный путь и эффектор.

    Все рецепторы участвуют в тех или иных рефлексах, так что их афферентные волокна служат афферентным путем соответствующей рефлекторной дуги. Число вставочных нейронов всегда больше одного, кроме моносинаптического рефлекса растяжения. Эфферентный путь представлен либо двигательными аксонами, либо постганглионарными волокнами вегетативной нервной системы, а эффекторами являются скелетные мышцы и гладкие мышцы, сердце, железы.

    Время от начала стимула до реакции эффектора называется временем рефлекса. В большинстве случаев оно определяется в основном временем проведения в афферентных и в эфферентных путях и в центральной части рефлекторной дуги, к которому следует прибавить время трансформации стимула в рецепторе в распространяющийся импульс, время передачи через синапсы в центральной нервной системе (синаптическая задержка), время передачи от эфферентного пути к эффектору и время активации эффектора.

    Рефлекторные дуги делятся на несколько типов:

    1. Моносинаптические рефлекторные дуги - в такой дуге участвует только один синапс, находящийся в центральной нервной системе. Такие рефлексы весьма обычны у всех позвоночных, они участвуют в регуляции мышечного тонуса и позы (например, коленный рефлекс). В этих дугах нейроны не доходят до головного мозга, и рефлекторные акты осуществляются без его участия, так как они стереотипны и не требуют обдумывания или сознательного решения. Они экономны в отношении числа участвующих центральных нейронов и обходятся без вмешательства головного мозга.

    2. Полисинаптические спинномозговые рефлекторные дуги - в них участвуют по меньшей мере два синапса, находящиеся в ЦНС, так как в дугу включен третий нейрон - вставочный, или промежуточный нейрон. Здесь имеются синапсы между сенсорным нейроном и вставочным нейроном и между вставочным и двигательным нейронами. Такие рефлекторные дуги позволяют организму осуществлять автоматические непроизвольные реакции, необходимые для приспособления к изменениям внешней среды (например, зрачковый рефлекс или сохранение равновесия при передвижении) и к изменениям в самом организме (регуляция частоты дыхания, кровяного давления и т.п.).

    3. Полисинаптические рефлекторные дуги с участием как спинного, так и головного мозга - в рефлекторных дугах этого типа имеется синапс в спинном мозге между сенсорным нейроном и нейроном, посылающим импульсы в головной мозг.

    Рецепторы сенсорные

    Термин «рецептор» применяется в двух значениях.

    Во-первых, это сенсорные рецепторы.

    Сенсорные рецепторы - это специфические клетки, настроенные на восприятие различных раздражителей внешней и внутренней среды организма и обладающие высокой чувствительностью к адекватному раздражителю.

    Сенсорные рецепторы (от лат. receptum - принимать) воспринимают раздражители внешней и внутренней среды организма путем преобразования энергии раздражения в рецепторный потенциал, который преобразуется в нервные импульсы. Неадекватные раздражители могут возбудить рецепторы: например, механическое давление на глаз вызывает ощущение света, однако энергия неадекватного раздражителя должна быть в миллионы и миллиарды раз больше адекватного.

    Сенсорные рецепторы являются первым звеном в рефлекторном пути и периферической частью более сложной структуры - анализаторов. Совокупность рецепторов, стимуляция которых приводит к изменению активности каких-либо нервных структур, называют рецептивным полем. Такой структурой могут быть афферентное волокно, афферентный нейрон, нервный центр (соответственно рецептивное поле афферентного волокна, нейрона, рефлекса). Рецептивное поле рефлекса часто называют рефлексогенной зоной.

    Во-вторых, это эффекторные рецепторы (циторецепторы), представляющие собой белковые структуры клеточных мембран, а также цитоплазмы и ядра, способные связывать активные химические соединения (гормоны, медиаторы, лекарства и др.) и запускать ответные реакции клетки на эти соединения. Эффекторные рецепторы имеют все клетки организма, в нейронах их особенно много на мембранах синаптических межклеточных контактов.

    Классификация сенсорных рецепторов

    рефлекторная дуга рецептор стимул

    1. В зависимости от расположения в теле и характера воспринимаемых стимулов, рецепторы делятся на три типа:

    экстерорецепторы - реагируют на стимулы, поступающие из внешней среды, например, уши, глаза и т.д.

    интерорецепторы - воспринимают стимулы, поступающие из внутренней среды организма, например, рецепторы сонных артерий, реагирующие на изменение кровяного давления и содержание углекислого газа в крови.

    проприорецепторы - отвечают на стимулы, связанные с положением и движением частей тела и сокращением мышц.

    Находясь в сознании, человек постоянно чувствует положение своих конечностей и движение суставов, пассивное или активное. Кроме того, он точно определяет сопротивление каждому своему движению. Все эти способности вместе называются проприорецепцией, так как стимуляция соответствующих рецепторов (проприорецепторов) исходит из самого тела, а не из внешней среды. Применяется также термин глубокая чувствительность, так как большая часть проприорецепторов расположена не поверхностно, а в мышцах, сухожилиях и суставах.

    Благодаря проприорецепторам человек обладает чувством положения, чувством движения и чувством силы.

    Чувство положения информирует о том, под каким углом находится каждый сустав, и в конечном итоге - положение всех конечностей. Чувство положения почти не подвержено адаптации.

    Чувство движения - это осознание направления и скорости движения суставов. Человек воспринимает как активное движение сустава при мышечном сокращении, так и пассивное, вызванное внешними причинами. Порог восприятия движения зависит от амплитуды и от скорости изменения угла сгибания суставов.

    Чувство силы - это способность оценить мышечную силу, нужную для движений или для удержания сустава в определенном положении.

    Проприорецепторы расположены во внекожных структурах, главные из которых - мышцы, сухожилия и суставные сумки.

    2. В зависимости от природы воспринимаемых стимулов рецепторы классифицируются следующим образом:

    Механорецепторы возбуждаются при их механической деформации; расположены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах.

    Хеморецепторы воспринимают химические изменения внешней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости. Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге.

    Терморецепторы реагируют на изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, слизистых оболочках, сосудах, внутренних органах, гипоталамусе, среднем, продолговатом и спинном мозге.

    Фоторецепторы в сетчатке глаза воспринимают световую (электромагнитную) энергию.

    Ноцицепторы - возбуждение их сопровождается болевыми ощущениями (болевые рецепторы). Раздражителями этих рецепторов являются механические, термические и химические факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах.

    3. С психофизиологической точки зрения рецепторы подразделяют в соответствии с органами чувств и формируемыми ощущениями на:

    Зрительные

    Слуховые

    Вкусовые

    Обонятельные

    Тактильные.

    4. В зависимости от степени специфичности рецепторов, т.е. их способности отвечать на один или более видов раздражителей, выделяют мономодальные и полимодальные рецепторы .

    В принципе каждый рецептор может отвечать не только на адекватный, но и на неадекватный раздражитель, однако чувствительность к ним разная. Рецепторы, чувствительность которых к адекватному раздражителю намного превосходит таковую к неадекватным, называются мономодальными. Мономодальность особенно характерна для экстерорецепторов (зрительных, слуховых, вкусовых и др.), но есть мономодальные и интерорецепторы например хеморецепторы каротидного синуса.

    Полимодальные рецепторы приспособлены к восприятию нескольких адекватных раздражителей, например механического и температурного или механического, химического и болевого. К полимодальным рецепторам относятся, в частности, ирритантные рецепторы легких, воспринимающие как механические (частицы пыли), так и химические (пахучие вещества) раздражители во вдыхаемом воздухе. Разница в чувствительности к адекватным и неадекватным раздражителям у полимодальных рецепторов выражена меньше, чем у мономодальных.

    5. По скорости адаптации рецепторы делят на три группы:

    1) быстро адаптирующиеся (фазные). Рецепторы вибрации и прикосновения кожи.

    2) медленно адаптирующиеся (тонические). Проприорецепторы, рецепторы растяжения легких, часть болевых рецепторов.

    3) смешанные (фазотонические), адаптирующиеся со средней скоростью. Фоторецепторы сетчатки, терморецепторы кожи.

    Свойства рецепторов

    Основные свойства рецепторов - чувствительность и способность к различению. Эти свойства обеспечиваются особыми структурными и функциональными приспособлениями:

    1. Параллельные сенсорные клетки с различными порогами возбуждения - клетки с низким порогом возбуждаются под действием слабых стимулов, а по мере возрастания силы раздражителя в отходящем от клетки нервном волокне частота импульсов увеличивается. В определенной точке наступает насыщение, и дальнейшее усиление импульса уже не повышает частоту импульсов, однако при этом возбуждаются сенсорные клетки с более высоким порогом чувствительности и начинают посылать импульсы, частота которых пропорциональна силе действующего стимула. Таким образом диапазон эффективного восприятия расширяется.

    2. Адаптация - при длительном воздействии сильного раздражителя большинство рецепторов вначале возбуждает в сенсорном нейроне импульсы с большой частотой, но постепенно частота их снижается. Это ослабление ответа во времени называется адаптацией. Скорость наступления и степень адаптации рецепторной клетки зависят от ее функции.

    Различают медленно адаптирующиеся рецепторы и быстро адаптирующиеся рецепторы. Значение адаптации в том, что при отсутствии изменений в окружающей среде клетки находятся в покое, что предотвращает перегрузку нервной системы ненужной информацией.

    3. Конвергенция и суммация. В некоторых случаях выходные пути от нескольких рецепторных клеток сходятся, т.е. конвергируют, к одному сенсорному нейрону. Воздействие стимула на одну из этих клеток не могло бы вызвать ответ в сенсорном нейроне, а одновременная стимуляция нескольких клеток дает достаточный суммарный эффект. Это явление называется суммацией.

    4. Обратная связь в регуляции рецепторов. В некоторых органах чувств порог чувствительности может изменяться под действием импульсов, поступающих из центральной нервной системы. Во многих случаях эта регуляция осуществляется по принципу обратной связи с рецептором и вызывает изменения во вспомогательных структурах, благодаря чему рецепторная клетка функционирует в ином диапазоне величин стимула.

    5. Латеральное торможение - оно состоит в том, что соседние сенсорные клетки, возбуждаясь, оказывают друг на друга тормозящее действие. Латеральное торможение усиливает контраст между двумя соседними участками, различающимися по интенсивности стимула.

    Список литературы

    1. Физиология человека: Учебник / Под ред. В.М. Смирнова. - М.: Медицина, 2002.

    2. Основы физиологии. / Под ред. П. Стерки. - М.: Мир, 1984.

    3. Недоспасов В.О. Физиология центральной нервной системы. - М.: ООО УМК «Психология», 2002.

    Размещено на Allbest.ru

    Подобные документы

      Исследование рецепторов как сложных образований, состоящих из нервных окончаний, обеспечивающих превращение влияния раздражителей в нервный импульс. Классификация рецепторов и механизм физиологии рецепции. Адаптация рецепторов и сенсорные модальности.

      реферат , добавлен 19.02.2011

      Понятие рефлекса и рефлекторной дуги, ответная реакция организма на раздражение. Рефлексы и деятельность нервной системы. Рефлекторная дуга и путь нервного импульса от рецепторов до рабочего органа. Разработка учения об условных рефлексах живых существ.

      контрольная работа , добавлен 08.11.2011

      Функция обонятельных рецепторов. Каналы обонятельных рецепторов, управляемые нуклеотидами. Сопряжение рецептора с ионными каналами. Вкусовые рецепторные клетки, характеристика основных категорий. Трансдукция ноцицептивных и температурных стимулов.

      реферат , добавлен 27.10.2009

      Физиология центральной нервной системы. Рефлекс - реакция организма на раздражение рецепторов. Значение рефлексов для организма. Закономерности механизмов осуществления рефлекторной деятельности. Свойства анализаторов, их значение, строение и функции.

      реферат , добавлен 28.05.2010

      Синтез серотонина и виды серотониновых рецепторов, их современная классификация. Связывающие свойства серотониновых рецепторов и их сопряжение с эффекторными системами клеток. Регуляция функций центральной нервной системы и периферических органов.

      презентация , добавлен 23.10.2013

      Классификация рецепторов, механизм их возбуждения. Функции зрительной сенсорной системы, строение органа зрения и сетчатки. Роль таламуса в восприятии зрительного образа. Основные элементы слуховой системы, значение кортиева органа и слухового нерва.

      контрольная работа , добавлен 05.02.2012

      Кодирование стимулов механорецепторами. Короткие и длинные рецепторы. Кодирование параметров стимула рецепторами растяжения. Рецепторы растяжения речного рака. Рецепторы растяжения в скелетных мышцах у млекопитающих. Основные типы сенсорных нейронов.

      реферат , добавлен 27.10.2009

      Функциональные системы организма. Внешние и внутренние раздражители организма человека, восприятие состояния внешней среды. Особенности организма человека, феномен синестезии, экстрасенсы-синестетики. Особенности темперамента при выборе профессии.

      реферат , добавлен 06.02.2013

      Гуморальная регуляция физиологических и биохимических процессов через жидкие среды организма. Синтез ацетилхолина. Виды холинорецепторов. Депонирование медиатора и хранение его в везикулах. Синтез медиатора в нервных окончаниях. Распад ацетилхолина.

      презентация , добавлен 23.10.2013

      Структурные единицы нервной системы. Центральная и периферическая нервная система. Ответная реакция организма на раздражение из внешней или внутренней среды. Рефлекс и рефлекторная дуга. Распространение нервных импульсов по простой рефлекторной дуге.

    Рецепцией называют процесс восприятия и трансформации (преобразования) энергии внешнего раздражителя в энергию нервного импульса или в сложную последовательность внутриклеточных процессов.

    Клеточная и сенсорная рецепция

    Под клеточной рецепцией понимают процесс восприятия и преобразования химического сигнала в сложную последовательность внутриклеточных химических процессов. Клеточная рецепция обеспечивает возможность обмена информации между клетками, который осуществляется при помощи биологически активных веществ (гормонов, медиаторов). Обязательным этапом такого межклеточного взаимодействия является связывание молекул вещества с соответствующей молекулой клетки-мишени, называемой клеточным рецептором . Роль клеточных рецепторов играют специфические белковые моле­кулы, которые могут быть расположены на поверхности клетки, в ци­топлазме или в ядре. Механизмы рецепции медиаторов и гормонов подробно рассматриваются в соответствующих лекциях.

    Сенсорной рецепцией называют процесс восприятия и преобразования энергии раздражителей внешней и внутренней среды организма в энергию нервных импульсов, передаваемую по чувствительным нервам в ЦНС. Сенсорный рецептор представляет собой нервную клетку или комплекс нервной и эпителиальной клетки, специально приспособленный для восприятия определенного типа раздражителей. Сенсорные рецепторы являются начальными звеньями любой рефлек­торной дуги, а также участвуют в оценке параметров полезного при­способительного результата в функциональных системах организма.

    Классификация и строение сенсорных рецепторов

    По строению рецепторы подразделяют на первичные и вторичные (рис. 1).

    • К первичным относят такие сенсорные рецепторы, у которых действие раздражителя воспринимается непосредственно периферическими отростками чувствительного нейрона (нервными окончаниями), которые могут быть:

    • свободными, т. е. не имеют дополнительных образований;

    • инкапсулированными, т.е. окончания чувствительного нейрона заключены в особые образования, осуществляющие первичное преобразование энергии раздражителя.

    • К вторичным относят такие сенсорные рецепторы, у которых действие раздражителя воспринимается специализированной рецептирующей клеткой не нервного происхождения. Возбуждение, возникшее в рецептирующей клетке, передается через синапс на чувствительный нейрон.

    Тело чувствительного нейрона обычно располагается за преде­лами ЦНС: в спинномозговом или вегетативном ганглии. От такого нейрона отходят два отростка – дендрит, который следует к периферическим органам и тканям, и аксон, который направляется в спинной мозг.

    По расположению

    • экстерорецепторы – воспринимают раздражители из внешней среды организма;

    • интерорецепторы – воспринимают раздражители из внутренней среды организма;

    • проприорецепторы – специализированные рецепторы опорнодвигательной системы.

    По разнообразию воспринимаемых раздражителей сенсорные ре­цепторы подразделяют на:

    • мономодальные – приспособлены для восприятия только одного вида раздражителя;

    • полимодальные – приспособлены для восприятия различных видов раздражителей.

    По модальности сенсорные рецепторы подразделяют на:

    • хеморецепторы – воспринимают действие химических веществ;

    • фоторецепторы – воспринимают световые раздражители;

    • механорецепторы – воспринимают давление, вибрацию, перемещение, степень растяжения;

    • терморецепторы – чувствительны к изменениям температуры;

    • ноцицепторы – воспринимают болевое раздражение.

    Преобразование энергии в сенсорном рецепторе

    Этапы преобразования энергии внешнего раздражителя в энергию нервных импульсов.

    • Действие раздражителя. Внешний стимул взаимодействует со специфическими мембранными структурами окончаний чувствительного нейрона (в первичном рецепторе) или рецептирующей клетке (во вторичном рецепторе), что приводит к изменению ионной проницаемости мембраны.

    • Генерация рецепторного потенциала. В результате изменения ионной проницаемости происходит изменение мембранного потенциала (деполяризация или гиперполяризация) чувствительного нейрона (в первичном рецепторе) или рецептирующей клетке (во вторичном рецепторе). Изменение мембранного потенциала, наступающее в результате действия раздражителя, называют рецепторным потенциалом (РП) .

    • Распространение рецепторного потенциала. В первичном рецепторе РП распространяется электротонически и достигает ближайшего перехвата Ранвье. Во вторичном рецепторе РП электротонически распространяется по мембране рецептирующей клетки и достигает пресинаптической мембраны, где вызывает выделение медиатора. В результате срабатывания синапса (между рецептирующей клеткой и чувствительным нейроном) происходит деполяризация постсинаптической мембраны чувствительного нейрона (ВПСП). Образовавшийся ВПСП распространяется электротонически по дендриту чувствительного нейрона и достигает ближайшего перехвата Ранвье.

    • В области перехвата Ранвье РП (в первичном рецепторе) или ВПСП (во вторичном рецепторе) преобразуется в серию ПД (нервных импульсов). Образовавшиеся нервные импульсы проводятся по аксону (центральному отростку) чувствительного нейрона в ЦНС. Поскольку РП генерирует образование серии ПД, его часто называют генераторным потенциалом.

    Закономерности преобразования энергии внешнего раздражителя в серию нервных импульсов (рис. 2):

    • чем выше сила действующего раздражителя, тем больше амплитуда РП;

    • чем больше амплитуда РП, тем больше частота нервных импульсов.

    Свойства рецепторов

    Специфичность . Большинство рецепторов приспособлены для восприятия только одного вида раздражителей (только одной модальности). Специфичность таких мономодальных рецепторов не является абсолютной – практически любой рецептор реагирует на разные раздражители. Однако пороговая сила того раздражителя, к восприятию которого рецептор приспособлен, значительно ниже таковой для всех прочих раздражителей. Рецепторы одной и той же модальности могут подразделяться на несколько групп в зависимости от характеристик воспринимаемого раздражителя. Например, колбочки сетчатки глаза распадаются на 3 подгруппы – колбочки с максимальной чувствительностью к свету с длиной волны 450, 530 и 560 нм.

    Чувствительность . Количественной мерой чувствительности сенсорного рецептора является абсолютный порог чувствительности – минимальная сила раздражителя, способная вызвать возбуждение рецептора.

    Адаптацией называют явление ослабления возбуждения в рецепторе при действии длительного раздражителя постоянной силы.

    В зависимости от скорости адаптации рецепторы подразделяют на:

    • тонические (пропорциональные) рецепторы генерируют нервные импульсы в течение всего времени действия раздражителя; после высокочастотного залпа в начале действия раздражителя частота нервных импульсов устанавливается на постоянном уровне (рис. 3, А);

    • промежуточные (фазнотонические) рецепторы генерируют нервные импульсы в течение всего времени действия раздражителя, однако их частота существенно уменьшается (рис. 3, Б);

    • фазные (дифференциальные) рецепторы генерируют нервные импульсы в начальный (ON-ответ ) и конечный (OFF-ответ) период действия раздражителя (рис. 4, В).

    Рецептивное поле

    Рецептивным полем нейрона называют множество рецепторов, функционально связанных с этим нейроном. Рецептивное поле нейрона представляет собой динамическое образование – один и тот же нейрон в различные моменты времени может оказаться функционально связанным с различным количеством рецепторов. Максимальная величина рецептивного поля какого-либо нейрона соответствует количеству рецепторов, которые связаны с эти нейроном морфологически, а минимальная величина может ограничиваться всего одним рецептором (рис. 4).

    Перекрытие рецептивных полей. У первичных рецепторов зоны ветвления периферических отростков чувствительных нейронов могут перекрывать друг друга (рис. 5, А). У вторичных рецепторов одна рецептирующая клетка может контактировать с несколькими чувствительными нейронами, т. е. может входить в состав рецептивных полей различных нейронов (рис. 6.5, Б).

    Взаимодействие рецепторов в рецептивном поле. При одновременном раздражении нескольких рецепторов, входящих в состав рецептивного поля одного нейрона, в этом нейроне можно получить ответ только от одного рецептора. В других рецептивных полях имеют место более сложные взаимодействия. Например, в сетчатке глаза существуют тормозные взаимодействия между рецепторами, расположенными в центральной и периферической части рецептивного поля.

    Сенсорной системой(анализатором) - называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, нервных путей, передающих информацию от рецепторов в мозг и частей мозга, которые перерабатывают и анализируют эту информацию

    В сенсорную систему входят 3 части

    1. Рецепторы - органы чувств

    2. Проводниковый отдел, связывающий рецепторы с мозгом

    3. Отдел коры головного мозга, которая воспринимает и обрабатывает информацию.

    Рецепторы - периферическое звено, предназначенное для восприятия раздражителей внешней или внутренней среды.

    Сенсорные системы имеют общий план строения и для сенсорных систем характерна

    Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний с нейронами моторных областей коры большого мозга. Нейроны специализированы для переработки разных видов сенсорной информации.

    Многоканальность - наличие множества параллельных каналов обработки и передачи информации, что обеспечивает детальность анализа сигналов и большую надежность.

    Разное число элементов в соседних слоях , что формирует, так называемые, «сенсорные воронки»(суживающиеся или расширяющиеся) Они могут обеспечить устранение избыточности информации или, наоборот, дробный и сложный анализ признаков сигнала

    Дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали означает формирование отделов сенсорной системы, состоящих из нескольких нейронных слоев(обонятельные луковицы, кохлеарные ядра, коленчатые тела).

    Дифференциация по горизонтали представляет наличие разных по свойствам рецепторов и нейронов в пределах одного слоя. Например палочки и колбочки в сетчатке глаза по-разному перерабатывают информацию.

    Основной задачей сенсорной системы является восприятие и анализ свойств раздражителей, на основе которых возникают ощущения, восприятия, представления. Это составляет формы чувственного, субъективного отражения внешнего мира

    Функции сенсорных систем

    1. Обнаружение сигналов. Каждая сенсорная система в процессе эволюции приспособилась к восприятию адекватных, присущих для данной системы раздражителей. Сенсорная система, например глаз, может получать разные - адекватные и неадекватные раздражения(свет или удар по глазу). Сенсорные системы воспринимают силу - глаз воспринимает 1 световой фотон(10 в -18 Вт). Удар по глазу(10 в -4 Вт). Электрический ток(10 в -11 Вт)
    2. Различение сигналов.
    3. Передача или преобразование сигналов . Любая сенсорная система работает, как преобразователь. Она преобразует одну форму энергию действующего раздражителя в энергию нервного раздражения. Сенсорная система не должна исказить сигнала раздражителя.
    • Может носить пространственный характер
    • Временные преобразования
    • ограничение избыточности информации(включение тормозных элементов, которые затормаживают соседние рецепторы)
    • Выделение существенных признаков сигнала
    1. Кодирование информации - в форме нервных импульсов
    2. Детектирование сигналов, т. е. выделение признаков раздражителя, имеющего поведенческое значение
    3. Обеспечивают опознание образов
    4. Адаптируются к действию раздражителей
    5. Взаимодействие сенсорных систем, которые формируют схему окружающего мира и одновременно позволяют нам соотносить нас самих с этой схемой, для нашего приспособления. Все живые организмы не могут существовать без восприятия информации из окружающей среды. Чем точнее организм получает такую информацию, тем будут выше его шансы в борьбе за существование

    Сенсорные системы способны реагировать на неадекватные раздражители. Если попробовать клеммы батарейки, то это вызывает вкусовое ощущение - кислое, это действие электрического тока. Такая реакция сенсорной системы на адекватные и неадекватные раздражители, поставили перед физиологией вопрос - на сколько мы можем доверять нашим органам чувств.

    Иоган Мюллер сформулировал в 1840 году закон специфической энергии органов чувств.

    Качество ощущений не зависит от характера раздражителя, а определяется всецело заложенной в чувствительной системе специфической энергией, которая освобождается при действии раздражителя.

    При таком подходе мы можем знать только, что заложено в нас самих, а не что в окружающем мире. Последующие исследования показали, что возбуждения в любой сенсорной системе возникают на основе одного источника энергии - АТФ.

    Ученик Мюллера Гельмгольц создал теорию символов , в соответствии с которой он рассматривал ощущения, как символы и предметы окружающего мира. Теория символов отрицала возможность познания окружающего мира.

    Эти 2 направления были названы физиологическим идеализмом. Что же собой представляет ощущение? Ощущение это субъективный образ объективного мира. Ощущения - это образы внешнего мира. Они существуют в нас и порождаются действием вещей на наши органы чувств. У каждого из нас этот образ будет являться субъективным, т.е. он зависит от степени нашего развития, опыта и каждый человек воспринимает окружающие предметы и явления по своему. Они будут являться объективными, т.е. это значит, то они существуют, независимо от нашего сознания. Раз имеется субъективность восприятия, то как решить, кто же наиболее правильно воспринимает? Где же будет истина? Критерием истины является практическая деятельность. Идет последовательное познание. На каждом этапе получается новая информация. Ребенок пробует игрушки на вкус, разбирает их на детали. Именно на основе этого глубоко опыта мы приобретаем более глубокие знания о мире.

    Классификация рецепторов.

    1. Первичные и вторичные. Первичные рецепторы представляют собой рецепторное окончание, которое образовано самим первым чувствительным нейроном(Тельце Пачини, тельце Мейснера, диск Меркеля, Тельце Руффини). Этот нейрон лежит в спинальном ганглии. Вторичные рецепторы воспринимают информацию. За счет специализированных нервных клеток, которые затем передают возбуждение на нервное волокно. Чувствительные клетки органов вкуса, слуха, равновесия.
    2. Дистантные и контактные. Часть рецепторов воспринимает возбуждение при непосредственном контакте - контактные , а другие могут воспринимать раздражение на некотором расстоянии - дистантные
    3. Экстерорецепторы, интерорецепторы. Экстерорецепторы - воспринимают раздражение из внешней среды - зрение, вкус и др. и они обеспечивают на приспособление к окружающей среде. Интерорецепторы - рецепторы внутренних органов. Они отражают состояние внутренних органов и внутренней среды организма.
    4. Соматические - поверхностные и глубокие. Поверхностные - кожи, слизистых оболочек. Глубокие - рецепторы мышц, сухожилий, суставов
    5. Висцеральные
    6. Рецепторы ЦНС
    7. Рецепторы специальных чувств - зрительные, слуховые, вестибулярные, обонятельные, вкусовые

    По характеру восприятия информации

    1. Механорецепторы(кожа, мышцы, сухожилия, суставы, внутренние органы)
    2. Терморецепторы(кожа, гипоталамус)
    3. Хеморецепторы(дуга аорты, каротидный синус, продолговатый мозг, язык, нос, гипоталамус)
    4. Фоторецептоыр(глаз)
    5. Болевые(ноцицептивные) рецепторы(кожа, внутренние органы, слизистые оболочки)

    Механизмы возбуждения рецепторов

    В случае первичных рецепторов, действие раздражителя воспринимается окончанием чувствительного нейрона. Действующий раздражитель может вызывать гиперполяризацию или деполяризацию поверхностной мембраны рецепторы в основном за счет изменения натриевой проницаемости. Повышение проницаемости к ионам натрия приводит к деполяризации мембраны и на мембране рецептора возникает рецепторный потенциал. Он существует до тех пор, пока действует раздражитель.

    Рецепторный потенциал не подчиняется закону «Все или ничего», его амплитуда зависит от силы раздражителя. У него нет периода рефрактерности. Это позволяет суммироваться рецепторным потенциалам при действии последующих раздражителей. Он распространяется мелено, с угасанием. Когда рецепторный потенциал достигает критической пороговой величины, он вызывает появление потенциала действия в ближайшем перехвате Ранвье. В перехвате Ранвье возникает потенциал действия, который подчиняется закону «Все или ничего» Этот потенциал будет распространяющимся.

    Во вторичном рецепторе действие раздражителя воспринимается рецепторной клеткой. В этой клетке возникает рецепторный потенциал, следствием которого будет являться выделение медиатора из клетки в синапс, который действует на постсинаптическую мембрану чувствительного волокна и взаимодействие медиатора с рецепторами приводит к образованию другого, локального потенциала, который называют генераторным . Он по своим свойства идентичен рецепторным. Его амплитуда определяется количеством выделившегося медиатора. Медиаторы - ацетилхолин, глутамат.

    Потенциалы действия возникают периодически, т.к. для них характерен период рефрактерности, когда мембрана утрачивает свойство возбудимости. Потенциалы действия возникают дискретно и рецептор в сенсорной системе работает, как аналогово-дискретный преобразователь. В рецепторах наблюдается приспособление - адаптация к действию раздражителей. Есть быстроадаптирующиеся, есть медленно адаптирующиеся. При адаптация снижается амплитуда рецепторного потенциала и число нервных импульсов, которые идут по чувствительному волокну. Рецепторы кодируют информацию. Оно возможно по частоте потенциалов, по группировки импульсов в отдельные залпы и интервалами между залпами. Кодирование возможно по числу активированных рецепторов в рецептивном поле.

    Порог раздражения и порог развлечения.

    Порог раздражения - минимальная сила раздражителя, которая вызывает ощущение.

    Порог развлечении - минимальная сила изменения раздражителя, при которой возникает новое ощущение.

    Волосковые клетки возбуждаются при смещении волосков на 10 в -11 метра - 0,1 амстрема.

    В 1934 году Вебер сформулировал закон, устанавливающий зависимость между первоначальной силой раздражения и интенсивностью ощущения. Он показал, что изменение силы раздражителя, етсь величина постоянная

    ∆I / Io = К Io=50 ∆I=52,11 Io=100 ∆I=104,2

    Фехнер определили, что ощущение прямопропорционально логарифму раздражения

    S=a*logR+b S-ощущение R- раздражение

    S=KI в Aстепени I - сила раздражения, К и А - константы

    Для тактильных рецепторов S=9,4*I d 0,52

    В сенсорных системах есть рецепторы саморегуляции чувствительности рецепторов.

    Влияние симпатической системы - симпатическая система повышает чувствительность рецепторов к действию раздражителей. Это полезно в ситуации опасности. Повышает возбудимость рецепторов - ретикулярная формация. В составе чувствительных нервов обнаружены эфферентные волокна, которые могут изменять чувствительность рецепторов. Такие нервные волокна есть в слуховом органе.

    Сенсорная система слуха

    У большинства людей, живущих в современной остановке слух прогрессивно падает. Это происходит с возрастом. Этому способствует загрязнение звуками окружающей среды - автотранспорт, дискотека и др. Изменения в слуховом аппарате становятся не обратимыми. Уши человека содержат 2 чувствительных органа. Слух и равновесие. Звуковые волны распространяются в форме сжатий и разряжений в упругих средах и при этом распространение звуков в плотных средах идет лучше, чем в газах. Звук обладает 3мя важными свойствами - высотой или частотой, мощностью, или интенсивностью и тембром. Высота звука зависит от частоты колебаний и ухо человека воспринимает с частотой от 16 до 20000 Гц. С максимальной чувствительностью от 1000 о 4000 Гц.

    Основная частота звука гортани мужчины - 100 Гц. Женщины - 150 Гц. При разговоре возникают дополнительные высокочастотные звуки в форме шипения, свиста, которые исчезают при разговоре по телефону и это делает речь понятнее.

    Мощность звука определяется амплитудой колебаний. Мощность звука выражают в Дб. Мощность представляет собой логарифмическую зависимость. Шепотная речь - 30 Дб, нормальная речь - 60-70 Дб. Звук транспорта - 80, шум мотора самолета - 160. Мощность звука 120 Дб вызывает дискомфорт, а 140 приводят к болезненным ощущениям.

    Тембр определяется вторичными колебаниями на звуковых волнах. Упорядоченные колебания - создают музыкальные звуки. А беспорядочные колебания вызывают просто шум. Одна и та же нот звучит по разному на разных инструментах из за разных дополнительных колебаний.

    Ухо человека имеет 3 составные части - наружное, среднее и внутренне ухо. Наружное ухо представлено ушной раковиной, которое действует как звука улавливающая воронка. Ухо человека менее совершенно улавливает звуки, чем у кролика, лошади, которые умеют управлять своими ушами. В основе ушной раковины - хрящ, за исключением мочки уха. Хрящевая ткань придает эластичность и форму уху. Если хрящ повреждается, то он восстанавливается разрастаясь. Наружный слуховой проход S образной формы - внутрь, вперед и вниз, длина 2,5 см. Слуховой проход покрыт кожей с малой чувствительностью наружной части и высокой чувствительностью внутренней. В наружной части слухового прохода имеются волосы, которые предупреждают попадание в слуховой проход частиц. Железы слухового прохода вырабатывают желтую смазку, которая тоже предохраняет слуховой проход. В конце прохода - барабанная перепонка, которая состоит из фиброзных волокон, покрытых снаружи кожей, а внутри - слизистой. Барабанная перепонка отделяет среднее от наружного уха. Она колеблется с частотой воспринимаемого звука.

    Среднее ухо представлено барабанной полостью, объем которой равен примерно 5-6 капель воды и барабанная полость заполнена водухом, выстлана слизистой оболочкой и содержит 3 слуховые косточки: молоточек, наковальня и стремечко.среднее ухо сообщается с носоглоткой с помощью евстахиевой трубы. В состоянии покоя просвет евстахиевой трубы закрыт, что выравнивает давление. Воспалительные процессы, приводящие к воспалению этой трубы вызывают ощущение заложенности. Среднее ухо отделено от внутреннего овальным и круглым отверстием. Колебания барабанной перепонки через систему рычагов передаются стремечком на овальное окно, причем наружное ухо осуществляет передачу звуков воздушным способом.

    Имеется различие площади барабанной перепонки и овального окна(площадь барабанной перепонки равна 70мм в кв. а у овального окна- 3.2мм в кв). При передаче колебания с перепонки на овальное окно амплитуда уменьшается а сила колебаний увеличивается в 20-22 раза. В частотах до 3000 Гц передается 60% Е на внутреннее ухо. В среднем ухе имеется 2 мышцы изменяющие колебания: мышца напрягающая барабанную перепонку(прикрепляется к центральной части барабанной перепонки и к рукоятке молоточка)- при увеличении силы сокращения уменьшается амплитуда; мышца стремечка- ее сокращения ограничивают колебания стремечка. Эти мышцы предупреждают травмы барабанной перепонки. Кроме воздушной передачи звуков есть и костная передача, но это сила звука не в состоянии вызвать колебания костей черепа.

    Внутрее ухо

    внутреннее ухо представляет собой лабиринт, состоящий из взаимосвязанных трубочек и расширений. Во внутреннем ухе располагается орган равновесия. Лабиринт имеет костную основу, а внутри располагается перепончатый лабиринт и там находится эндолимфа. К слуховой части относится улитка, она образует 2.5 оборота вокруг центральной оси и делится на 3 лестницы: вестибулярная, барабанная и перепончатая. Вестибулярный канал начинается мембраной овального окна, а заканчивается круглым окном. На вершине улитки эти 2 канала сообщаются с помощью геликокрема. А оба этих канала заполнены перилимфой. В среднем перепончатом канале располагается звуковоспринимающий аппарат — кортиев орган. Основная мембрана построена из эластических волокон, которые начинаются у основания(0.04мм) и до вершины (0.5мм). К вершине плотность волокон уменьшается в 500 раз. На основной мембране располагается кортиев орган. Он построен из 20-25 тысяч специальных волосковых клеток, расположенных на поддерживающих клетках. Волосковые клетки лежат в 3-4 ряда(наружный ряд) и в один ряд(внутренний). На вершине волосковых клеток имеются стереоцили или киноцили- самые большие стереоцили. К волосковым клеткам подходят чувствительные волокна 8 пары ЧМН от спирального ганглия. При этом 90% выделенных чувствительных волокон оказываются на внутренних волосковых клетках. На одну внутреннюю волосковую клетку конвергирует до 10 волокон. А в составе нервных волокон есть и эфферентные(оливо-улиточный пучок). Они образуют тормозные синапсы на чувствительных волокнах от спирального ганглия и иннервирует наружные волосковые клетки. Раздражение кортиевого органа связано с передачей колебаний косточек на овальное окно. Низкочастотные колебания распространяются от овального окна до вершины улитки (вовлекается вся основная мембрана).при низких частотах наблюдается возбуждение волосковых клеток лежащих на вершине улитки. Изучением распространения волн в улитке занимался Бекаши. Он обнаружил, что с увеличением частоты вовлекается меньший по протяженности столб жидкости. Высокочастотные звуки не могут вовлечь весь столб жидкости, поэтому чем больше частота, тем меньше колеблется перилимфа. Колебания основной мембраны могут возникать при передаче звуков через перепончатый канал. При колебании основной мембраны происходит смещение волосковых клеток вверх, что вызывает деполяризацию, а если вниз- волоски отклоняются внутрь, что приводит к гиперполяризации клеток. При деполяризации волосковых клеток открываются Са-каналы и Са способствует потенциалу действия, который несет информацию о звуке. Наружные слуховые клетки имеют эфферентную иннервацию и передача возбуждения идет с помощью Асh на наружных волосковых клетках. Эти клетки могут изменять свою длину: они укорачиваются при гиперполяризации и удлиняются при поляризации. Изменение длины наружных волосковых клеток влияет на колебательный процесс, что улучшает восприятие звука внутренними волосковыми клетками. Изменение потенциала волосковых клеток связано с ионным составом эндо- и перилимфы. Перилимфа напоминает ликвор, а эндолимфа имеет высокую концентрацию К(150 ммоль). Поэтому эндолимфа приобретает положительный заряд к перилифме.(+80мВ). Волосковые клетки содержат много К; они имеют мембранный потенциал и отрицательно заряженный внутри и положительный снаружи(МП=-70мВ), а разница потенциалов дает возможность проникновения К из эндолимфы внутрь волосковых клеток. Изменение положения одного волоска открывает 200-300 К- каналов и возникает деполяризация. Закрытие сопровождается гиперполяризацией. В кортиевом органе идет частотное кодирование за счет возбуждения разных участков основной мембраны. При этом было показано что звуки низкой частоты могут кодироваться числом нервных импульсов таким же количеством как и звуком. Такое кодирование возможно при восприятии звука до 500Гц. Кодирование информации звука достигается увеличением числа залпов волокон на более интенсивный звук и за счет числа активирующихся нервных волокон. Чувствительные волокна спирального ганглия оканичиваются в дорсальных и вентральных ядрах улитки продолговатого мозга. От этих ядер сигнал поступает в ядра оливы как своей так и противоположной стороны. От ее нейронов идут восходящие пути в составе латеральной петли которые подходят к нижним бугоркам четверохолмия и медиальному коленчатому телу зрительного бугра. От последнего сигнал идет в верхнюю височную извилину(извилина Гешля). Это соответствует 41 и 42 полям(первичная зона) и 22 поле(вторичная зона). В ЦНС существует топотоническая организация нейронов, то есть воспринимаются звуки с разной частотой и разной интенсивностью. Корковый центр имеет значение для восприятия, последовательности звука и пространственной локализации. При поражении 22 поля нарушается определение слов (рецептивная оппозия).

    Ядра верхней оливы делят на медиальные и латеральные части. А латеральные ядра определяют неодинаковую интенсивность звуков, поступающих к обеим ушам. Медиальное ядро верхней оливы улавливает временные различия поступления звуковых сигналов. Обнаружено что сигналы от обоих ушей поступают в различные дендритные системы одного и того же воспринимающего нейрона. Нарушение слухового восприятия может проявляться звоном в ушах при раздражении внутреннего уха или слухового нерва и двумя типами глухоты: проводниковой и нервной. Первая связана с поражениями наружного и среднего уха(серная пробка).Вторая связана с дефектами внутреннего уха и поражениями слухового нерва. У пожилых людей утрачивается способность воспринимать высокочастотные голоса. За счет двух ушей можно определять пространственную локализацию звука. Это оказывается возможным, если звук отклоняется от средины положения на 3 градуса. При восприятии звуков возможно развитие адаптации за счет ретикулярной формации и эфферентных волокон(воздействием на наружные волосковые клетки.

    Зрительная система.

    Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза, затем идёт возбуждение фоторецепторов, передача и преобразование в нейронных слоях зрительной системы и заканчивается принятием высшими корковыми отделами решения о зрительном образе.

    Строение и функции оптического аппарата глаза. Глаз имеет шарообразную форму, что важно для поворота глаза. Свет проходит через несколько прозрачных сред - роговицу, хрусталик и стекловидное тело, имеющие определённые преломляющие силы, выражающихся в диоптриях. Диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза при рассматривании далёких предметов - 59D, близких - 70,5D. На сетчатке образуется уменьшенное перевёрнутое изображение.

    Аккомодация - приспособление глаза к ясному видению предметов на разных расстояниях. Хрусталик играет главную роль в аккомодации. При рассмотрении близких предметов ресничные мышцы сокращаются, циннова связка расслабляется, хрусталик становится более выпуклым в силу его эластичности. При рассмотрении дальних - мышцы расслаблены, связки натянуты и растягивают хрусталик, делая его более уплощённым. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. В норме дальняя точка ясного видения - в бесконечности, ближайшая - 10 см от глаза. Хрусталик с возрастом теряет эластичность, поэтому ближайшая точка ясного видения отодвигается и развивается старческая дальнозоркость.

    Аномалии рефракции глаза.

    Близорукость (миопия). Если продольная ось глаза слишком длинная или увеличивается преломляющая сила хрусталика, то изображение фокусируется перед сетчаткой. Человек плохо видит вдаль. Назначаются очки с вогнутыми стёклами.

    Дальнозоркость (гиперметропия). Развивается при уменьшении преломляющих сред глаза или при укорочении продольной оси глаза. В результате изображение фокусируется за сетчаткой и чел плохо видит близкорасположенные предметы. Назначаются очки с выпуклыми линзами.

    Астигматизм - неодинаковое преломление лучей в разных направлениях, обусловленное не строго сферической поверхностью роговой оболочки. Компенсируются очками с поверхностью, приближающейся к цилиндрической.

    Зрачок и зрачковый рефлекс. Зрачок - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и за счёт устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то зрачок быстро сужается - зрачковый рефлекс. На ярком свету размер - 1,8 мм, при среднем - 2,4, в темноте - 7,5. Увеличение приводит к ухудшению качества изображения, но повышает чувствительность. Рефлекс имеет адаптационное значение. Расширяет зрачок симпатика, сужает - парасимпатика. У здоровых размеры обоих зрачков одинаковы.

    Структура и функции сетчатки. Сетчатка - внутренняя светочувствительная оболочка глаза. Слои:

    Пигментный - ряд отростчатых эпителиальных клеток чёрного цвета. Функции: экранирование (препятствует рассеиванию и отражению света, повышая чёткость), регенерация зрительного пигмента, фагоцитоз обломков палочек и колбочек, питание фоторецепторов. Контакт между рецепторами и пигментным слоем слабая, поэтому именно здесь происходит отслойка сетчатки.

    Фоторецепторы. Колбы отвечают за цветовое зрение, их - 6-7 млн. Палки за сумеречное, их - 110-123 млн. Они расположены неравномерно. В центральной ямке - только колбы, здесь - наибольшая острота зрения. Палки чувствительнее колб.

    Строение фоторецептора. Состоит из наружной воспринимающей части - наружного сегмента, с зрительным пигментом; соединительной ножки; ядерной части с пресинаптическим окончанием. Наружная часть состоит из дисков - двумембранная структура. Наружные сегменты постоянно обновляются. Пресинаптическое окончание содержит глутамат.

    Зрительные пигменты. В палках - родопсин с поглощением в области 500 нм. В колбах - йодопсин с поглощениями 420 нм (синий), 531 нм (зелёный), 558 (красный). Молекула состоит из белка опсина и хромофорной части - ретиналя. Только цис-изомер воспринимает свет.

    Физиология фоторецепции. При поглощении кванта света цис-ретиналь превращается в транс-ретиналь. Это вызывает пространственные изменения в белковой части пигмента. Пигмент обесцвечивается и переходит в метародопсин II, способный взаимодействовать с примембранным белком трансдуцином. Трансдуцин активируется и связывается с ГТФ, активируя фосфодиэстеразу. ФДЭ разрушает цГМФ. В результате концентрация цГМФ падает, что приводит к закрытию ионных каналов, при этом понижается концентрация натрия, приводя к гиперполяризации и возникновению рецепторного потенциала, распостраняющимся по клетке до пресинаптического окончания и вызывая уменьшение выделения глутамата.

    Восстановление исходного темнового состояния рецептора. При утрате метародопсином способности взаимодействовать с трандуцином и активируется гуанилатциклаза, синтезирующая цГМФ. Гуанилатциклаза активируется падением концентрации кальция, выбрасываемого из клетки белком-обменником. В результате концентрация цГМФ повышается и она вновь связывается с ионным каналом, открывая его. При открытии в клетку идут натрий и кальций, деполяризуя мембрану рецептора, переводя его в темновое состояние, что вновь ускоряет выход медиатора.

    Нейроны сетчатки.

    Фоторецепторы синаптически связаны с биполярными нейронами. При действии света на медиатор уменьшается выделение медиатора, что приводит к гиперполяризации биполярного нейрона. От биполярного сигнал передаётся на ганглиозный. Импульсы от многих фоторецепторов конвергируют к одному ганглиозному нейрону. Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, сигналы которых меняют синаптическую передачу межде рецепторами и биполярными (горизонтальные) и между биполярными и ганглиозными (амакриновые). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В системе есть и эфферентные волокна, действующие на синапсы между биполярными и ганглиозными клетками, регулируя возбуждение меж ними.

    Нервные пути.

    1ый нейрон - биполярный.

    2ой - ганглиозный. Их отростки идут в составе зрительного нерва, делают частичный перекрёст (необходимо для обеспечения каждого полушария информацией от каждого глаза) и идут в мозг в составе зрительного тракта, попадая в латеральное коленчатое тело таламуса (3ий нейрон). Из таламуса - в проекционную зону коры 17ое поле. Здесь 4ый нейрон.

    Зрительные функции.

    Абсолютная чувствительность. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел минимальную (пороговую) энергию. Палка может быть возбуждена одним квантом света. Палки и колбы мало различаются по возбудимости, но число рецепторов, посылающих сигналы на одну ганглиозную клетку различно в центре и на периферии.

    Зрительная алаптация.

    Приспособление зрительной сенсорной системы к условиям яркрй освещённости - световая адаптация. Обратное явление - темновая адаптация. Повышение чувствительности в темноте - поэтапное, обусловленное темновым восстановлением зрительных пигментов. Сначала восстанавливается йодопсин колб. Это мало влияет на чувствительность. Затем восстанавливается родопсин палок, что очень сильно повышает чувствительность. Для адаптации так же важны процессы изменения связей между элементами сетчатки: ослабление горизонтального торможения, приводящее к увеличению числа клеток, посылающее сигналы на ганглиозный нейрон. Влияние ЦНС тоже играет роль. При освещении одного глаза понижает чувствительность другого.

    Дифференциальная зрительная чувствительность. По закону Вебера человек различит разницу в освещении, если оно будет сильнее на 1-1,5%.

    Яркостной контраст происходит из-за взаимного латерального торможения зрительных нейронов. Серая полоска на светлом фоне кажется темнее серой на тёмном, так как клетки возбуждённые светлым фоном тормозят клетки, возбуждённые серой полоской.

    Слепящая яркость света . Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза. Чем дольше была темновая адаптация, тем меньшая яркость вызывает ослепление.

    Инерция зрения. Зрительное ощущение появляется и пропадает не сразу. От раздражения до восприятия проходит 0,03-0,1 с. Быстро следующие одно за другим раздражения сливаются в одно ощущение. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом основано кино. Ощущения, продолжающиеся после прекращения раздражения - последовательные образы (образ лампы в темноте после её выключения).

    Цветовое зрение.

    Весь видимый спектр от фиолетового (400нм) до красного (700нм).

    Теории. Трёхкомпонентная теория Гельмгольца. Цветовое ощущение обеспечиваемое тремя типами колб, чувствительных к одной части спектра (красной, зелёной или синей).

    Теория Геринга. В колбах есть вещества чувствительные к бело-чёрному, красно-зелёному и жёлто-синему излучениям.

    Последовательные цветовые образы. Если смотреть на окрашенный предмет, а затем на белый фон, то фон приобретёт дополнительный цвет. Причина - цветовая адаптация.

    Цветовая слепота. Дальтонизм - расстройство, при котором невозможно различие цветов. При протанопии не различается красный цвет. При дейтеранопии - зелёный. При тританопии - синий. Диагностируется полихроматическими таблицами.

    Полная потеря цветовосприятия - ахромазия, при которой всё видится в оттенках серого.

    Восприятие пространства.

    Острота зрения - максимальная способность глаза различать отдельные детали объектов. Нормальный глаз различает две точки, видимые под углом 1минута. Максимальная острота в области жёлтого пятна. Определяется специальными таблицами.