Полное и неполное горение газа. Горение газа

Антропотоксины;

Продукты деструкции полимерных материалов;

Вещества, поступающие в помещение с загрязненным атмосферным воздухом;

Химические вещества, выделяющиеся из полимерных материалов даже в небольших количествах, могут вызвать существенные нарушения в состоянии живого организма, например, в случае аллергического воздействия полимерных материалов.

Интенсивность выделения летучих веществ зависит от условий эксплуатации полимерных материалов - температуры, влажности, кратности воздухообмена, времени эксплуатации.

Установлена прямая зависимость уровня химического за­грязнения воздушной среды от общей насыщенности помещений полимерными материалами.

Более чувствителен к воздействию летучих компонентов из полимерных материалов растущий организм. Установлена также повышенная чувствительность больных к воздействию химических веществ, выделяющихся из пластиков, по сравне­нию со здоровыми. Исследования показали, что в помещениях с большой насыщенностью полимерами подверженность насе­ления аллергическим, простудным заболеваниям, неврастении, вегетодистонии, гипертонии оказалась выше, чем в помеще­ниях, где полимерные материалы использовались в меньшем количестве.

Для обеспечения безопасности применения полимерных материалов принято, что концентрации выделяющихся из по­лимеров летучих веществ в жилых и общественных зданиях не должны превышать их ПДК, установленные для атмосферного воздуха, а суммарный показатель отношений обнаруженных концентраций нескольких веществ к их ПДК должен быть не выше единицы. С целью предупредительного санитарного надзора за полимерными материалами и изделиями из них предложено лимитировать выделение ими вредных веществ в окружающую среду или на стадии изготовления, или вскоре после их выпуска заводами-изготовителями. В настоящее время обоснованы допустимые уровни около 100 химических веществ, выделяющихся из полимерных материалов.

В современном строительстве все отчетливее проявляется тенденция к химизации технологических процессов и использо­ванию в качестве смесей различных веществ, в первую очередь бетона и железобетона. С гигиенической точки зрения важно учитывать неблагоприятное влияние химических добавок в стро­ительные материалы из-за выделения токсических веществ.

Не менее мощным внутренним источником загрязнения среды помещений служат и продукты жизнедеятельности человека - антропотоксины. Установлено, что в процессе жиз­недеятельности человек выделяет примерно 400 химических соединений.

Исследования показали, что воздушная среда невентилируемых помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Химический анализ воз­духа помещений позволил идентифицировать в них ряд токси­ческих веществ, распределение которых по классам опасности представляется следующим образом: диметиламин, сероводород, двуокись азота, окись этилена, бензол (второй класс опасности - высокоопасные вещества); уксусная кислота, фенол, метилсти-рол, толуол, метанол, винилацетат (третий класс опасности - малоопасные вещества). Пятая часть выявленных антропотоксинов относится к высокоопасным веществам. При этом обнаруже­но, что в невентилируемом помещении концентрации диметиламина и сероводорода превышали ПДК для атмосферного воздуха. Превышали ПДК или находились на их уровне и концентрации таких веществ, как двуокись и окись углерода, аммиак. Осталь­ные вещества, хотя и составляли десятые и меньшие доли ПДК, вместе взятые свидетельствовали о неблагополучии воздушной среды, поскольку даже двух-четырехчасовое пребывание в этих условиях отрицательно сказывалось на умственной работоспо­собности исследуемых.



Изучение воздушной среды газифицированных помеще­ний показало, что при часовом горении газа в воздухе помещений концентрация веществ составляла (мг/м 3): окиси углерода - в среднем 15, формальдегида - 0,037, окиси азота - 0,62, дву­окиси азота - 0,44, бензола - 0,07. Температура воздуха в помещении во время горения газа повышалась на 3-6 °С, влаж­ность увеличивалась на 10-15%. Причем высокие концентрации химических соединений наблюдались не только в кухне, но и в жилых помещениях квартиры. После выключения газовых приборов содержание в воздухе окиси углерода и других хими­ческих веществ снижалось, но к исходным величинам иногда не возвращалось и через 1,5-2,5 ч.

Изучение действия продуктов горения бытового газа на внешнее дыхание человека выявило увеличение нагрузки на систему дыхания и изменение функционального состояния цен­тральной нервной системы.

Одним из самых распространенных источников загрязнения воздушной среды закрытых помещений является курение. При спектрометрическом анализе воздуха, загрязненного табачным дымом, обнаружено 186 химических соединений. В недостаточно проветриваемых помещениях загрязнение воздушной среды продуктами курения может достигать 60-90%.

При изучении воздействия компонентов табачного дыма на некурящих (пассивное курение) у испытуемых наблюдалось раздражение слизистых оболочек глаз, увеличение содержания в крови карбоксигемоглобина, учащение пульса, повышение уровня артериального давления. Таким образом, основные источники загрязнения воздушной среды помещения условно можно разделить на четыре группы:

Значимость внутренних источников загрязнения в различ­ных типах зданий неодинакова. В административных зданиях уровень суммарного загрязнения наиболее тесно коррелиру­ет с насыщенностью помещений полимерными материалами (R = 0,75), в крытых спортивных сооружениях уровень химичес­кого загрязнения наиболее хорошо коррелирует с численностью людей в них (R = 0,75). Для жилых зданий теснота корреляцион­ной связи уровня химического загрязнения как с насыщенностью помещений полимерными материалами, так и с количеством людей в помещении приблизительно одинаковая.

Химическое загрязнение воздушной среды жилых и об­щественных зданий при определенных условиях (плохой вен­тиляции, чрезмерной насыщенности помещений полимерными материалами, большом скоплении людей и др.) может достигать уровня, оказывающего негативное влияние на общее состояние организма человека.

В последние годы, по данным ВОЗ, значительно возросло число сообщений о так называемом синдроме больных зданий. Описанные симптомы ухудшения здоровья людей, проживаю­щих или работающих в таких зданиях, отличаются большим раз­нообразием, однако имеют и ряд общих черт, а именно: головные боли, умственное переутомление, повышенная частота воздуш­но-капельных инфекций и простудных заболеваний, раздраже­ние слизистых оболочек глаз, носа, глотки, ощущение сухости слизистых оболочек и кожи, тошнота, головокружение.

Первая кате­гория - временно "больные" здания - включает недавно пос­троенные или недавно реконструированные здания, в которых интенсивность проявления указанных симптомов с течением времени ослабевает и в большинстве случаев примерно через полгода они исчезают совсем. Уменьшение остроты проявления симптомов, возможно, связано с закономерностями эмиссии ле­тучих компонентов, содержащихся в стройматериалах, красках и т. д.

В зданиях второй категории - постоянно "больных" опи­санные симптомы наблюдаются в течение многих лет, и даже широкомасштабные оздоровительные мероприятия могут не дать эффекта. Объяснение такой ситуации, как правило, найти трудно, несмотря на тщательное изучение состава воздуха, работы вентиляционной системы и особенностей конструкции здания.

Следует отметить, что не всегда удается обнаружить пря­мую зависимость между состоянием воздушной среды помеще­ния и состоянием здоровья населения.

Однако обеспечение оптимальной воздушной среды жилых и общественных зданий - важная гигиеническая и инженерно-техническая проблема. Ведущим звеном в решении этой пробле­мы является воздухообмен помещений, который обеспечивает требуемые параметры воздушной среды. При проектировании систем кондиционирования воздуха в жилых и общественных зданиях необходимая норма воздухоподачи рассчитывается в объеме, достаточном для ассимиляции тепло- и влаговыделений человека, выдыхаемой углекислоты, а в помещениях, предна­значенных для курения, учитывается и необходимость удаления табачного дыма.

Помимо регламентации количества приточного воздуха и его химического состава известное значение для обеспечения воздушного комфорта в закрытом помещении имеет электри­ческая характеристика воздушной среды. Последняя определя­ется ионным режимом помещений, т. е. уровнем положительной и отрицательной аэроионизации. Негативное воздействие на организм оказывает как недостаточная, так и избыточная ио­низация воздуха.

Проживание в местностях с содержанием отрицательных аэроионов порядка 1000-2000 в 1 мл воздуха благоприятно влия­ет на состояние здоровья населения.

Присутствие людей в помещениях вызывает снижение содержания легких аэроионов. При этом ионизация воздуха изменяется тем интенсивнее, чем больше в помещении людей и чем меньше его площадь.

Уменьшение числа легких ионов связывают с потерей воз­духом освежающих свойств, с его меньшей физиологической и химической активностью, что неблагоприятно действует на организм человека и вызывает жалобы на духоту и "нехватку кислорода". Поэтому особый интерес представляют процессы деионизации и искусственной ионизации воздуха в помещении, которые, естественно, должны иметь гигиеническую регламен­тацию.

Необходимо подчеркнуть, что искусственная ионизация воздуха помещений без достаточного воздухоснабжения в ус­ловиях высокой влажности и запыленности воздуха ведет к неизбежному возрастанию числа тяжелых ионов. Кроме того, в случае ионизации запыленного воздуха процент задержки пыли в дыхательных путях резко возрастает (пыль, несущая электри­ческие заряды, задерживается в дыхательных путях человека в гораздо большем количестве, чем нейтральная).

Следовательно, искусственная ионизация воздуха не яв­ляется универсальной панацеей для оздоровления воздуха закрытых помещений. Без улучшения всех гигиенических па­раметров воздушной среды искусственная ионизация не только не улучшает условий обитания человека, но, напротив, может оказать негативный эффект.

Оптимальными суммарными концентрациями легких ионов являются уровни порядка 3 х 10, а минимально необходимыми 5 х 10 в 1 см 3 . Эти рекомендации легли в основу действующих в Российской Федерации санитарно-гигиенических норм допу­стимых уровней ионизации воздуха производственных и обще­ственных помещений (табл. 6.1).

Горением называют быстро протекающую во времени химическую реак-цию соединения горючих компонентов топлива с кислородом воздуха, сопровож-дающуюся интенсивным выделением теплоты, света и продуктов сгорания.

Для метана реакция горения с воздухом:

CH4 + 2O2 = CO2 + 2H2 O + Q н

C3 H8 + 5O2 = 3CO2 + 3H2 O + Q н

Для СУГ :

C4 H10 + 6,5O2 = 4CO2 + 5H2 O + Q н

Продуктами полного сгорания газов являются водяные пары (H 2 O ), диоксид углерода (CO 2 ) или углекислый газ.

При полном сгорании газов цвет пламени, как правило, голубовато-фиолетовый.

Объемный состав сухого воздуха принимается: O 2 21%, N 2 79%, из этого след., что

1м3 кислорода содержится в 4,76м3 (5 м3 ) воздуха.

Вывод: для сжигания

- 1м3 метана необходимо 2м3 кислорода или около 10м3 воздуха,

- 1м3 пропана - 5м3 кислорода или около 25м3 воздуха,

- 1м3 бутана - 6,5м3 кислорода или около 32,5м3 воздуха,

- 1м3 СУГ ~ 6м3 кислорода или около 30м3 воздуха.

Практически при сжигании газа водяные пары, как правило, не конденсируются, а удаляются вместе с другими продуктами сгорания. Поэтому технические расчеты ведут по низшей теплоте сгорания Q н.

Условия, необходимые для горения:

1. наличие топлива (газа);

2. наличие окислителя (кислорода воздуха);

3. наличие источника температуры воспламенения.

Неполное сгорание газов.

Причиной неполного сгорания газа является недостаточное количество воздуха.

Продуктами неполного сгорания газов являются оксид углерода или угарный газ (CO ), несгоревшие горючие углеводороды (Cn Hm ) и атомарный углерод или сажа.

Для природного газа CH 4 + O 2 CO 2 + H 2 O + CO + CH 4 + C

Для СУГ Cn Hm + O2 → CO2 + H2 O + CO + Cn Hm + C

Наиболее опасным является появление угарного газа, который действует на организм человека отравляюще. Образование сажи придает пламени желтую окраску.

Неполное сгорание газа опасно для здоровья человека (при содержании 1% СО в воздухе 2-3 вздоха для человека достаточно, чтобы отравиться со смертельным исходом).

Неполное сгорание неэкономично (сажа препятствует процессу передачи тепла, при неполном сгорании газа мы недополучаем тепло, ради которого сжигаем газ).

Для контроля полноты сгорания обращают внимание на цвет пламени, которое при полном сгорании должно быть голубым, а при неполном сгорании - желтовато-соломенным. Наиболее совершенный способ контроля полноты сгорания - анализ продуктов сгорания с помощью газоанализаторов.

Способы сжигания газа.

Понятие о первичном и вторичном воздухе.

Существуют 3 способа сжигания газа:

1) диффузионный,

2) кинетический,

3) смешанный.

Диффузионный способ или способ без предварительного смешения газа с воздухом.

Из горелки в зону горения поступает только газ. Воздух, необходимый для горения, смешивается с газом в зоне горения. Этот воздух называется вторичным.

Пламя вытянутое, желтого цвета.

a = 1,3÷1,5 t ≈ (900÷1000) о С

Кинетический способ - способ с полным предварительным смешением газа с воздухом.

В горелку подается газ и подается воздух дутьевым устройством. Воздух, необходимый для горения и который подается в горелку для предварительного смешения с газом, называется первичным.

Пламя короткое, зеленовато-синеватого цвета.

a = 1,01÷1,05 t ≈ 1400о С

Смешанный способ - способ с частичным предварительным смешиванием газа с воздухом.

Газ инжектирует первичный воздух в горелку. В зону горения из горелки поступает газовоздушная смесь с недостаточным для полного сгорания количеством воздуха. Остальной воздух - вторичный.

Пламя средних размеров, зеленовато-голубоко цвета.

a =1,1 ¸ 1,2 t ≈1200о С

Коэффициент избытка воздуха a = L пр./ L теор. - это отношение количества воздуха, необходимого для горения на практике к количеству воздуха, необходимого для горения и теоретически посчитанного.

Всегда должен быть a >1, в противном случае будет недожог.

L пр.= a L теор., т.е. коэффициент избытка воздуха показывает во сколько раз количество воздуха, необходимого для горения на практике больше количества воздуха, необходимого для горения и посчитанного теоретически.

Lд. - действительное количество воздуха, подаваемое в топку, его обычно подают с избытком. Соотношение между теоретическим и действительным расходом выражается уравнением:

где α - коэффициент избытка воздуха (как правило, больше 1).

Неполное сжигание газа ведет к перерасходу топлива и повышает опасность отравления продуктами неполного сгорания газа, в состав которых входит и оксид углерода (СО).

Продукты сгорания газа и контроль за процессом горения.

Продукты сгорания природного газа - это диоксид углеро­да (углекислый газ) , водяные пары, некоторое количество избыточного кислорода и азот. Избыточный кислород содержится в продуктах горения только в тех случаях, когда горение происходит с избытком воз­духа, а азот в продуктах сгорания содержится всегда, так как яв­ляется составной частью воздуха и не принимает участия в горе­нии.

Продуктами неполного сгорания газа могут быть оксид уг­лерода (угарный газ ), несгоревшие водород и метан, тяжелые углеводороды, сажа.

О процессе горения правильнее всего можно судить по приборам анализа уходящих газов, показывающим содержание в нем углекислого газа и кислорода. Если в топке котла пламя вытянутое и имеет темно-желтую окраску, это говорит недостатке воздуха, а если пламя становится коротким и имеет ослепительно-белую окраску, то о его избытке.

Регулировать работу котлоагрегата можно двумя способам изменением тепловой мощности всех горелок, установленных котле, или отключением их части. Способ регулирования зависит от местных условий и должен быть указан в производственной инструкции. Изменение тепловой мощности горелок допустимо в том случае, если она не выходит за пределы устойчивой работы. Отклонение тепловой мощности за пределы устойчивой работы может привести к отрыву или проскоку пламени.

Регулировать работу отдельных горелок следует в два-приема, медленно и постепенно изменяя расход воздуха и газа.

При уменьшении тепловой мощности сначала уменьшают подачу воздуха , а затем газа; при увеличении тепловой мощности сначала увеличивают подачу газа , а затем воздуха.



При этом следует регулировать разрежение в топке, меняя положение шибера котлом или лопаток направляющего аппарата перед дымососом.

При необходимости повышения тепловой мощности горелок пред­варительно увеличивают разрежение в топке ; при снижении тепловой мощности сначала регулируют работу горелок, а затем уменьшают разрежение в топке.

Методы сжигания газа.

В зависимости от способа образования ГВС методы сжигания можно разделить на диффузионный, смешанный и кинетический .

При диффузионном методе к фронту горения газ поступает под давлением, а воздух из окружающего пространства за счёт молекулярной или турбулентной диффузии, смесеобразование протекает одновременно с процессом горения, поэтому скорость процесса горения определяется скоростью смесеобразования.

Процесс горения начинается после образования контакта между газом и воздухом и образования ГВС необходимого состава. При этом к струе газа диффундирует воздух, а из струи газа в воздух - газ. Таким образом, вблизи струи газа создаётся ГВС, в результате горения которой образуется зона первичного горения газа(2) . Горение основной части газа происходит в зоне(З), а зоне(4) движутся продукты горения.

Этот метод сжигания в основном применяется в быту (духовки, газовые плиты и т.д.)

При смешанном методе сжигания газа горелка обеспечивает предварительное смешение газа только с частью воздуха, необходимого для полного сгорания газа. Остальной воздух поступает из окружающей среды непосредственно к факелу.

В этом случае сначала выгорает лишь часть газа, смешанная с первичным воздухом (50%-60%), а оставшаяся часть газа, разбавленная продуктами горения, выгорает после присоединения кислорода вторичного воздуха.

Воздух, окружающий пламя горелки называется вторичным .



При кинетическом методе сжигания газа к месту горения подаётся ГВС полностью подготовленная внутри горелки.

Классификация газовых горелок.

Газовой горелкой называют устройство, обеспечивающее устойчивое сжигание газообразного топлива и регулирование процесса горения.

Основные функции газовых горелок:

Подача газа и воздуха к фронту горения;

Смесеобразование;

Стабилизация фронта воспламенения;

Обеспечение требуемой интенсивности процесса горения газа.

По методу сжигания газа все горелки можно разделить на три группы:

Диффузионные - без предварительного смешения газа с воздухом;

Диффузионно-кинетические - с неполным предварительным смешением газа с воздухом;

Кинетические - с полным предварительным смешением газа с воздухом.

По способу подачи воздуха горелки подразделяются на:

Бездутьевые - у которых воздух поступает в топку за счёт разряжения в ней.

Инжекционные - в которых воздух засасывается за счёт энергии струи газа.

Дутьевые - у каторых воздух подаётся в горелку или топку с помощью вентилятора.

По давлению газа, на котором работают горелки:

- низкого давления до 0,05 кгс/см 2 ;

- среднего давления свыше 0,05 до З кгс/см 2 ;

- высокого давления свыше 3 кгс/см 2 .

Общие требования для всех горелок :

Обеспечение полноты сгорания газа;

Устойчивость при изменении тепловой мощности;

Надёжность при эксплуатации;

Компактность;

Удобство при обслуживании.

Александр Павлович Константинов

Главный инспектор по контролю безопасности ядерно и радиационно опасных объектов. Кандидат технических наук, доцент, профессор Российской академии естествознания.

Кухня с газовой плитой часто бывает главным источником загрязнения воздуха всей квартиры. И, что очень важно, это касается большинства жителей России. Ведь в России 90% городских и свыше 80% сельских жителей пользуются газовыми плитами Хата, З. И. Здоровье человека в современной экологической обстановке. - М. : ФАИР-ПРЕСС, 2001. - 208 с. .

В последние годы появились публикации серьёзных исследователей о высокой опасности газовых плит для здоровья. Медики знают, что в домах, где установлены газовые плиты, жители болеют чаще и дольше, чем в домах с электроплитами. Причём речь идёт о множестве разных болезней, а не только о заболеваниях дыхательных путей. Особенно заметно снижение уровня здоровья у женщин, детей, а также у пожилых и хронически больных людей, которые больше времени проводят дома.

Профессор В. Благов не зря назвал применение газовых плит «широкомасштабной химической войной против собственного народа».

Почему использование бытового газа вредит здоровью

Попытаемся ответить на этот вопрос. Есть несколько факторов, которые в сумме делают применение газовых плит опасным для здоровья.

Первая группа факторов

Эта группа факторов обусловлена самой химией процесса горения природного газа. Даже если бы бытовой газ сгорал полностью до воды и углекислого газа, это приводило бы к ухудшению состава воздуха в квартире, особенно на кухне. Ведь при этом из воздуха выжигается кислород, одновременно повышается концентрация углекислого газа. Но это не главная беда. В конце концов, тоже самое происходит с воздухом, которым дышит человек.

Гораздо хуже, что в большинстве случаев сгорание газа происходит не полностью, не на все 100%. Из-за неполного сгорания природного газа образуются гораздо более токсичные продукты. Например, оксид углерода (угарный газ), концентрация которого может многократно, в 20–25 раз превышать допустимую норму. А ведь это ведёт к головным болям, аллергии, недомоганиям, ослаблению иммунитета Яковлева, М. А. А у нас в квартире газ. - Деловой экологический журнал. - 2004. - № 1(4). - С. 55. .

Помимо угарного газа в воздух выделяются сернистый газ, оксиды азота, формальдегид, а также бензпирен - сильный канцероген. В городах бензпирен попадает в атмосферный воздух от выбросов металлургических предприятий, тепловых электростанций (особенно угольных) и автомобилей (особенно старых). Но концентрация бензпирена даже в загазованном атмосферном воздухе не идёт в сравнение с его концентрацией в квартире. На рисунке показано, насколько больше мы получаем бензпирена, находясь на кухне.


Поступление бензпирена в организм человека, мкг/сут

Сравним первые два столбца. На кухне мы получаем вредных веществ в 13,5 раз больше, чем на улице! Для наглядности оценим поступление бензпирена в наш организм не в микрограммах, а в более понятном эквиваленте - числе выкуриваемых ежедневно сигарет. Так вот, если курильщик выкуривает в день одну пачку (20 сигарет), то на кухне человек получает в день эквивалент от двух до пяти сигарет. То есть хозяйка, имеющая газовую плиту, как бы немного «курит».

Вторая группа факторов

Эта группа связана с условиями эксплуатации газовых плит. Любой водитель знает, что нельзя находиться в гараже одновременно с автомобилем, у которого включён двигатель. Но ведь на кухне мы имеем как раз такой случай: сжигание углеводородного топлива в закрытом помещении! У нас отсутствует то устройство, которое есть у каждого автомобиля, - выхлопная труба. По всем правилам гигиены каждая газовая плита должна быть снабжена зонтом вытяжной вентиляции.

Особенно плохо обстоят дела в случае, если мы имеем маленькую кухню в малогабаритной квартире. Мизерная площадь, минимальная высота потолков, плохая вентиляция и весь день работающая газовая плита. А ведь при низких потолках продукты сгорания газа скапливаются в верхнем слое воздуха толщиной до 70–80 сантиметров Бойко, А. Ф. Здоровье на 5+. - М. : Российская газета, 2002. - 365 с. .

Часто труд домохозяйки у газовой плиты сравнивают с вредными условиями труда на производстве. Это не совсем правильно. Расчёты показывают, что если кухня маленькая, при этом отсутствует хорошая вентиляция, то мы имеем дело с особо вредными условиями труда. Типа металлурга, обслуживающего коксохимические батареи.

Как уменьшить вред от газовой плиты

Как же нам быть, если всё настолько плохо? Может быть, действительно стоит избавиться от газовой плиты и установить электрическую или индукционную? Хорошо, если есть такая возможность. А если нет? На этот случай имеется несколько простых правил. Достаточно их соблюдать, и вы сможете уменьшить вред здоровью от газовой плиты в десятки раз. Перечислим эти правила (большая их часть - рекомендации профессора Ю. Д. Губернского) Ильницкий, А. Пахнет газом. - Будь здоров!. - 2001. - № 5. - С. 68–70. .

  1. Необходимо установить над плитой вытяжной зонт с воздухоочистителем. Это самый действенный приём. Но даже если по каким-то причинам вы не можете этого сделать, то остальные семь правил в сумме тоже позволят значительно уменьшить загазованность воздуха.
  2. Следите за полнотой сгорания газа. Если вдруг цвет газа стал не таким, каким должен быть по инструкции, немедленно вызывайте газовиков для регулирования разладившейся горелки.
  3. Не загромождайте плиту лишней посудой. Посуда должна стоять только на работающих горелках. В этом случае будет обеспечиваться свободный доступ воздуха к горелкам и более полное сгорание газа.
  4. Одновременно в работе лучше использовать не более двух горелок или духовку и одну горелку. Даже если у вашей плиты четыре горелки, одновременно лучше включать максимум две.
  5. Максимальное время непрерывной работы газовой плиты - два часа. После этого необходимо сделать перерыв и хорошенько проветрить кухню.
  6. Во время работы газовой плиты двери на кухню должны быть закрыты, а форточка открыта. Это обеспечит удаление продуктов сгорания через улицу, а не через жилые комнаты.
  7. После окончания работы газовой плиты целесообразно проветрить не только кухню, но и всю квартиру. Желательно сквозное проветривание.
  8. Никогда не используйте газовую плиту для обогрева и сушки белья. Вы же не станете для этой цели разжигать костёр посреди кухни, верно?

Одоризация

Горючие газы не имею запаха. Для своевременного определения наличия их в воздухе, быстрого и точного обнаружения мест утечки газ - одорируют (дают запах). Для одоризации используют этилмеркаптан (С 2 Н 5 SН). Норма одоризации 16 гр этилмеркаптана на 1000 м 3 газа, 8 гр этилмеркаптановой серы на 1000 м³. Одоризация проводится на газораспределительных станциях (ГРС). При наличии в воздухе 1% природного газа должен ощущаться его запах.

20 % газа в помещении вызывает удушье

5-15 % взрыв

0,15 % угарного газа СО - отравление; 0,5 % СО = 30 мин. дышать летальный исход; 1% угарного газа летальный исход.

Метан и другие углеводородные газы не ядовиты, но вдыхание их вызывает головокружение, а значительное содержание в воздухе приводит к удушью из-за недостатка кислорода.

Сгорание топлива полное и неполное:

Для сгорания 1м³ газа нужно 10м³ воздуха.

Горение природного газа – это реакция, при которой происходит преобразование химической энергии топлива в тепло.

Горение бывает полным и неполным. Полное горение происходит при достаточном количестве кислорода.

При полном сгорании газа образуется СО 2 (углекислый газ), Н 2 О

(вода). При неполном сгорании газа потеря теплоты. Недостаток кислорода О 2 окислителя.

Продукты неполного горения СО - угарный газ, отравляющего действия, С углерод, сажа.

Неполное сгорание – это неудовлетворительное смешение газа с воздухом, чрезмерное охлаждение пламени до завершения реакции горения.

Реакция горения основных компонентов природного газа:

1:10 метан СН 4 + 20 2 =СО 2 + 2Н 2 О = двуокись углерода +вода

неполное сгорание газа СН 4 + 1,5О 2 =2Н 2 О + СО - угарный газ

Преимущества и недостатки природного газа перед другими видами топлива.

Преимущества:

Стоимость добычи газа значительно ниже, чем угля и нефти;

Высокая теплота сгорания;

Обеспечена полнота сгорания и облегчение условий обслуживающего персонала;

Отсутствие в природных газах окиси углерода и сероводорода предупреждает отравление при утечках газа;

При сжигании газа необходим минимальный остаток воздуха в печи и при этом отсутствуют затраты в результате механического досжигания;

При сжигании газового топлива обеспечивается более точное регулирование температуры;

При сжигании газа горелки можно разместить в доступном месте печи, что дает возможность лучшей теплоотдачи и необходимости температурного режима;

Возможность изменения формы пламени для нагрева в определенном месте.

Недостатки:

Взрыво и пожароопасный;

Процесс сжигания газа возможен только при вытеснении кислорода;

Эффект взрыва при самовозгорании;

Возможность детонации смеси газа и воздуха.