Как образуется угарный газ в квартире. Отравление угарным газом

Угарный газ, окись углерода (СО) представляет собой бесцветный газ без запаха и вкуса, который является немного менее плотным, чем воздух. Он токсичен для гемоглобинных животных (включая человека), если его концентрации выше примерно 35 частей на миллион, хотя он также производится в обычном метаболизме животных в небольших количествах, и, как полагают, имеет некоторые нормальные биологические функции. В атмосфере, он пространственно переменный и быстрораспадающийся, и имеет определенную роль в формировании озона на уровне земли. Окись углерода состоит из одного атома углерода и одного атома кислорода, связанных тройной связью, которая состоит из двух ковалентных связей, а также одной дативной ковалентной связи. Это самый простой оксид углерода. Он является изоэлектроном с цианидом аниона, нитрозоний катионом и молекулярным азотом. В координационных комплексах, лиганд монооксида углерода называется карбонилом.

История

Аристотель (384-322 до н.э.) впервые описал процесс сжигания углей, который приводит к образованию токсичных паров. В древности существовал способ казни – закрывать преступника в ванной комнате с тлеющими углями. Однако, на тот момент механизм смерти был непонятен. Греческий врач Гален (129-199 гг. н.э.) предположил, что имело место изменение состава воздуха, который причинял человеку вред при вдыхании. В 1776 году французский химик де Лассон произвел СО путем нагревания оксида цинка с коксом, однако ученый пришел к ошибочному выводу, что газообразный продукт был водородом, поскольку он горел синим пламенем. Газ был идентифицирован как соединение, содержащее углерод и кислород, шотландским химиком Уильямом Камберлендом Круикшанком в 1800 году. Его токсичность на собаках была тщательно исследована Клодом Бернаром около 1846 года. Во время Второй мировой войны, газовая смесь, включающая окись углерода, использовалась для поддержания механических транспортных средств, работающих в некоторых частях мира, где было мало бензина и дизельного топлива. Внешний (с некоторыми исключениями) древесный уголь или газогенераторы газа, полученного из древесины, были установлены, и смесь атмосферного азота, окиси углерода и небольших количеств других газов, образующихся при газификации, поступала в газовый смеситель. Газовая смесь, полученная в результате этого процесса, известна как древесный газ. Окись углерода также использовалась в больших масштабах во время Холокоста в некоторых немецких нацистских лагерях смерти, наиболее явно – в газовых фургонах в Хелмно и в программе умерщвления Т4 «эвтаназия».

Источники

Окись углерода образуется в ходе частичного окисления углеродсодержащих соединений; она образуется, когда не хватает кислорода для образования двуокиси углерода (CO2), например, при работе с плитой или двигателем внутреннего сгорания, в замкнутом пространстве. В присутствии кислорода, включая его концентрации в атмосфере, монооксид углерода горит голубым пламенем, производя углекислый газ. Каменноугольный газ, который широко использовался до 1960-х годов для внутреннего освещения, приготовления пищи и нагревания, содержал окись углерода как значительное топливное составляющее. Некоторые процессы в современной технологии, такие как выплавка чугуна, до сих пор производят окись углерода в качестве побочного продукта. Во всем мире наиболее крупными источниками окиси углерода являются естественные источники, из-за фотохимических реакций в тропосфере, которые генерируют около 5 × 1012 кг окиси углерода в год. Другие природные источники СО включают вулканы, лесные пожары и другие формы сгорания. В биологии, окись углерода естественным образом вырабатывается под действием гемоксигеназы 1 и 2 на гем от распада гемоглобина. Этот процесс производит определенное количество карбоксигемоглобина у нормальных людей, даже если они не вдыхают окись углерода. После первого доклада о том, что окись углерода является нормальным нейромедиатором в 1993 году, а также одним из трех газов, которые естественным образом модулируют воспалительные реакции в организме (два других – оксид азота и сероводород), окись углерода получила большое внимание ученых в качестве биологического регулятора. Во многих тканях, все три газа, действуют как противовоспалительные средства, вазодилататоры и промоторы неоваскулярного роста. Продолжаются клинические испытания небольших количеств окиси углерода в качестве лекарственного средства. Тем не менее, чрезмерное количества монооксида углерода вызывает отравление угарным газом.

Молекулярные свойства

Окись углерода имеет молекулярную массу 28,0, что делает его немного легче, чем воздух, чья средняя молекулярная масса составляет 28,8. Согласно закону идеального газа, СО, следовательно, имеет меньшую плотность, чем воздух. Длина связи между атомом углерода и атомом кислорода составляет 112,8 пм. Эта длина связи согласуется с тройной связью, как в молекулярном азоте (N2), который имеет аналогичную длину связи и почти такую же молекулярную массу. Двойные связи углерод-кислород значительно длиннее, например, 120,8 м у формальдегида. Точка кипения (82 К) и температура плавления (68 K) очень похожи на N2 (77 К и 63 К, соответственно). Энергия диссоциации связи 1072 кДж / моль сильнее, чем у N2 (942 кДж / моль) и представляет собой наиболее сильную из известных химическую связь. Основное состояние электрона окиси углерода является синглетным , так как здесь нет неспаренных электронов.

Связующий и дипольный момент

Углерод и кислород вместе имеют, в общей сложности, 10 электронов в валентной оболочке. Следуя правилу октета для углерода и кислорода, два атома образуют тройную связь, с шестью общими электронами в трех связывающих молекулярных орбиталях, а не обычную двойную связь, как у органических карбонильных соединений. Так как четыре из общих электронов поступают из атома кислорода и только два из углерода, одна связующая орбиталь занята двумя электронами из атомов кислорода, образуя дативную или дипольную связь. Это приводит к C ← O поляризации молекулы, с небольшим отрицательным зарядом на углероде и небольшим положительным зарядом на кислороде. Две других связывающих орбитали занимают каждая один электрон из углерода и один из кислорода, образуя (полярные) ковалентные связи с обратной C → O поляризацией, так как кислород является более электроотрицательным, чем углерод. В свободной окиси углерода, чистый отрицательный заряд δ- остается в конце углерода, и молекула имеет небольшой дипольный момент 0,122 D. Таким образом, молекула асимметрична: кислород имеет больше плотности электронов, чем углерод, а также небольшой положительный заряд, по сравнению с углеродом, который является отрицательным. В противоположность этому, изоэлектронная молекула диазота не имеет дипольного момента. Если окись углерода действует в качестве лиганда, полярность диполя может меняться с чистым отрицательным зарядом на конце кислорода, в зависимости от структуры координационного комплекса.

Полярность связи и состояние окисления

Теоретические и экспериментальные исследования показывают, что, несмотря на большую электроотрицательность кислорода, дипольный момент исходит из более отрицательного конца углерода к более положительному концу кислорода. Эти три связи представляют собой фактически полярные ковалентные связи, которые сильно поляризованы. Рассчитанная поляризация к атому кислорода составляет 71% для σ-связи и 77% для обоих π -связей. Степень окисления углерода в окись углерода в каждой из этих структур составляет +2. Она рассчитывается так: все связующие электроны считаются принадлежащими к более электроотрицательным атомам кислорода. Только два несвязывающих электрона на углероде относятся к углероду. При таком подсчете, углерод имеет только два валентных электрона в молекуле по сравнению с четырьмя в свободном атоме.

Биологические и физиологические свойства

Токсичность

Отравление угарным газом является наиболее распространенным типом смертельного отравления воздуха во многих странах. Окись углерода представляет собой бесцветное вещество, не имеющее запаха и вкуса, но очень токсичное. Оно соединяется с гемоглобином с получением карбоксигемоглобина, который «узурпирует» участок в гемоглобине, который обычно переносит кислород, но неэффективен для доставки кислорода к тканям организма. Столь низкие концентрации, как 667 частей на миллион, могут вызвать преобразования до 50% гемоглобина в организме в карбоксигемоглобин. 50% уровень карбоксигемоглобина может привести к судорогам, коме и смерти. В Соединенных Штатах, Министерство труда ограничивает долгосрочные уровни воздействия окиси углерода на рабочем месте до 50 частей на миллион. В течение короткого периода времени, поглощение окиси углерода является накопительным, так как период его полувыведения составляет около 5 часов на свежем воздухе. Наиболее распространенные симптомы отравления угарным газом могут быть похожи на другие виды отравлений и инфекций, и включают такие симптомы, как головная боль, тошнота, рвота, головокружение, усталость и чувство слабости. Пострадавшие семьи часто считают, что они являются жертвами пищевого отравления. Младенцы могут быть раздражительными и плохо питаться. Неврологические симптомы включают спутанность сознания, дезориентацию, нарушение зрения, обмороки (потерю сознания) и судороги. Некоторые описания отравления угарным газом включают геморрагию сетчатки глаза, а также аномальный вишнево-красный оттенок крови. В большинстве клинических диагнозов, эти признаки наблюдаются редко. Одна из трудностей, связанных с полезностью этого «вишневого» эффекта, связана с тем, что она корректирует, или маскирует, в обратном случае нездоровый внешний вид, так как главный эффект удаления венозного гемоглобина связан с тем, что задушенный человек кажется более нормальным, или мертвый человек кажется живым, подобно эффекту красных красителей в составе для бальзамирования. Такой эффект окрашивания в бескислородной CO-отравленной ткани связан с коммерческим использованием монооксида углерода при окрашивании мяса. Оксид углерода также связывается с другими молекулами, такими как миоглобин и митохондриальная цитохромоксидаза. Воздействие окиси углерода может привести к значительному повреждению сердца и центральной нервной системы, особенно в бледном шаре, часто это связано с длительными хроническими патологическими состояниями. Окись углерода может иметь серьезные неблагоприятные последствия для плода беременной женщины.

Нормальная физиология человека

Окись углерода вырабатывается естественным образом в организме человека в качестве сигнальной молекулы. Таким образом, окись углерода может иметь физиологическую роль в организме в качестве нейротрансмиттера или релаксанта кровеносных сосудов. Из-за роли окиси углерода в организме, нарушения в её метаболизме связаны с различными заболеваниями, в том числе нейродегенерацией, гипертонией, сердечной недостаточностью и воспалениями.

    CO функционирует в качестве эндогенной сигнальной молекулы.

    СО модулирует функции сердечно-сосудистой системы

    CO ингибирует агрегацию и адгезию тромбоцитов

    CO может играть определенную роль в качестве потенциального терапевтического средства

Микробиология

Окись углерода является питательной средой для метаногенных архей, строительным блоком для ацетилкофермента А. Это тема для новой области биоорганометаллической химии. Экстремофильные микроорганизмы могут, таким образом, метаболизировать окись углерода в таких местах, как тепловые жерла вулканов. У бактерий, окись углерода производится путем восстановления двуокиси углерода ферментом дегидрогеназы монооксида углерода, Fe-Ni-S-содержащего белка. CooA представляет собой рецепторный белок окиси углерода. Сфера его биологической активности до сих пор неизвестна. Он может быть частью сигнального пути у бактерий и архей. Его распространенность у млекопитающих не установлена.

Распространенность

Окись углерода встречается в различных природных и искусственных средах.

Окись углерода присутствует в небольших количествах в атмосфере, главным образом, как продукт вулканической активности, но также является продуктом естественных и техногенных пожаров (например, лесные пожары, сжигание растительных остатков, а также сжигание сахарного тростника). Сжигание ископаемого топлива также способствует образованию окиси углерода. Окись углерода встречается в растворенном виде в расплавленных вулканических породах при высоких давлениях в мантии Земли. Поскольку природные источники окиси углерода переменны, чрезвычайно трудно точно измерить природные выбросы газа. Окись углерода является быстрораспадающимся парниковым газом, а также проявляет косвенное радиационное воздействие путем повышения концентрации метана и тропосферного озона в результате химических реакций с другими компонентами атмосферы (например, гидроксильный радикал, ОН), что, в противном случае, разрушило бы их. В результате естественных процессов в атмосфере, он, в конечном счете, окисляется до двуокиси углерода. Окись углерода является одновременно недолговечной в атмосфере (сохраняется в среднем около двух месяцев) и имеет пространственно переменную концентрацию. В атмосфере Венеры, окись углерода создается в результате фотодиссоциации двуокиси углерода электромагнитным излучением с длиной волны короче 169 нм. Из-за своей длительной жизнеспособности в средней тропосфере, окись углерода также используется в качестве трассера транспорта для струй вредных веществ.

Загрязнение городов

Окись углерода является временным загрязняющим веществом в атмосфере в некоторых городских районах, главным образом, из выхлопных труб двигателей внутреннего сгорания (в том числе транспортных средств, портативных и резервных генераторов, газонокосилок, моечных машин и т.д.), а также от неполного сгорания различных других видов топлива (включая дрова, уголь, древесный уголь, нефть, парафин, пропан, природный газ и мусор). Большие загрязнения CO могут наблюдаться из космоса над городами.

Роль в формировании приземного озона

Окись углерода, наряду с альдегидами, является частью серии циклов химических реакций, которые образуют фотохимический смог. Он вступает в реакцию с гидроксильным радикалом ( ОН) с получением радикального интермедиата HOCO, который быстро передает радикальный водород О2 с образованием перекисного радикала (НО2 ) и диоксида углерода (CO2). Перекисной радикал затем вступает в реакцию с оксидом азота (NO) с образованием диоксида азота (NO2) и гидроксильного радикала. NO 2 дает O (3P) через фотолиз, тем самым образуя O3 после реакции с O2. Так как гидроксильный радикал образуется в процессе образования NO2, баланс последовательности химических реакций, начиная с окиси углерода, приводит к образованию озона: CO + 2O2 + hν → CO2 + O3 (Где hν относится к фотону света, поглощаемому молекулой NO2 в последовательности) Хотя создание NO2 является важным шагом, приводящим к образованию озона низкого уровня, это также увеличивает количество озона другим, несколько взаимоисключающим, образом, за счет уменьшения количества NO, которое доступно для реакции с озоном.

Загрязнение воздуха внутри помещений

В закрытых средах, концентрация окиси углерода может легко увеличиться до летального уровня. В среднем, в Соединенных Штатах ежегодно от неавтомобильных потребительских товаров, производящих окись углерода, умирает 170 человек. Тем не менее, в соответствии с данными Департамента здравоохранения Флориды, «ежегодно более 500 американцев умирают от случайного воздействия окиси углерода и еще тысячи человек в США требуют неотложной медицинской помощи при несмертельном отравлении угарным газом». Эти продукты включают в себя неисправные топливные приборы сжигания, такие как печи, кухонные плиты, водонагреватели и газовые и керосиновые комнатные обогреватели; оборудование с механическим приводом, такое как портативные генераторы; камины; и древесный уголь, который сжигается в домах и других закрытых помещениях. Американская ассоциация центров контроля отравлений (AAPCC) сообщила о 15769 случаях отравления угарным газом, которые привели к 39 смертям в 2007 году. В 2005 году, CPSC сообщила о 94 смертях, связанных с отравлением моноксидом углерода от генератора. Сорок семь из этих смертей имели место во время перебоев в подаче электроэнергии из-за суровых погодных условий, в том числе, из-за урагана Катрина. Тем не менее, люди умирают от отравления угарным газом, производимым непродовольственными товарами, такими как автомобили, оставленные работающими в гаражах, прилегающих к дому. Центры по контролю и профилактике заболеваний сообщают, что ежегодно несколько тысяч человек обращаются в больницу скорой помощи при отравлении угарным газом.

Наличие в крови

Окись углерода поглощается через дыхание и попадает в кровоток через газообмен в легких. Она также производится в ходе метаболизма гемоглобина и поступает в кровь из тканей, и, таким образом, присутствует во всех нормальных тканях, даже если она не попадает в организм при дыхании. Нормальные уровни окиси углерода, циркулирующие в крови, составляют от 0% до 3%, и выше у курильщиков. Уровни окиси углерода нельзя оценить с помощью физического осмотра. Лабораторные испытания требуют наличия образца крови (артериальной или венозной) и лабораторного анализа на СО-оксиметр. Кроме того, неинвазивный карбоксигемоглобин (SPCO) с импульсной СО-оксиметрией является более эффективным по сравнению с инвазивными методами.

Астрофизика

За пределами Земли, окись углерода является второй наиболее распространенной молекулой в межзвездной среде, после молекулярного водорода. Из-за своей асимметрии, молекула окиси углерода производит гораздо более яркие спектральные линии, чем молекула водорода, благодаря чему СО гораздо легче обнаружить. Межзвёздный CO был впервые обнаружен с помощью радиотелескопов в 1970 году. В настоящее время он является наиболее часто используемым индикатором молекулярного газа в межзвездной среде галактик, а молекулярный водород может быть обнаружен только с помощью ультрафиолетового света, что требует наличия космических телескопов. Наблюдения за окисью углерода обеспечивают большую часть информации о молекулярных облаках, в которых образуется большинство звезд. Beta Pictoris, вторая по яркости звезда в созвездии Pictor, демонстрирует избыток инфракрасного излучения по сравнению с нормальными звездами ее типа, что обусловлено большим количеством пыли и газа (в том числе окиси углерода) вблизи звезды.

Производство

Было разработано множество методов для производства окиси углерода.

Промышленное производство

Основным промышленным источником CO является генераторный газ, смесь, содержащая, в основном, окись углерода и азот, образовавшийся при сгорании углерода в воздухе при высокой температуре, когда имеется избыток углерода. В печи, воздух пропускают через слой кокса. Первоначально произведенный СО2 уравновешивается с оставшимся горячим углем с получением СО. Реакция СО2 с углеродом с получением CO описывается как реакция Будуара. При температуре выше 800°C, CO является преобладающим продуктом:

    СО2 + С → 2 CO (ΔH = 170 кДж / моль)

Другой источник «водяной газ», смесь водорода и монооксида углерода, полученного с помощью эндотермической реакции пара и углерода:

    H2O + C → Н2 + СО (ΔH = +131 кДж / моль)

Другие подобные «синтетические газы» могут быть получены из природного газа и других видов топлива. Оксид углерода также является побочным продуктом восстановления руд оксида металла с углеродом:

    MO + C → M + CO

Окись углерода также получают путем прямого окисления углерода в ограниченном количестве кислорода или воздуха.

    2C (s) + O 2 → 2СО (g)

Поскольку СО представляет собой газ, восстановительный процесс может управляться путем нагревания, используя положительную (благоприятную) энтропию реакции. Диаграмма Эллингама показывает, что образованию СО отдается предпочтение по сравнению с СО2 при высоких температурах.

Подготовка в лаборатории

Окись углерода удобно получать в лаборатории путем дегидратации муравьиной кислоты или щавелевой кислоты, например, с помощью концентрированной серной кислоты. Еще одним способом является нагревание однородной смеси порошкообразного металлического цинка и карбоната кальция, который высвобождает CO и оставляет оксид цинка и оксид кальция:

    Zn + CaCO3 → ZnO + CaO + CO

Нитрат серебра и иодоформ также дают окись углерода:

    CHI3 + 3AgNO3 + H2O → 3HNO3 + CO + 3AgI

Координационная химия

Большинство металлов образуют координационные комплексы, содержащие ковалентно присоединенную окись углерода. Только металлы в низших степенях окисления будут соединяться с лигандами окиси углерода. Это связано с тем, что необходима достаточная плотность электронов, чтобы облегчить обратное пожертвование от металлической DXZ-орбитали, к π * молекулярной орбитали из СО. Неподеленная пара на атоме углерода в СО также жертвует электронную плотность в dx²-y² на металле для формирования сигма-связи. Это пожертвование электрона также проявляется цис-эффектом, или лабилизацией СО лигандов в цис-положении. Карбонил никеля, например, образуется путем прямого сочетания окиси углерода и металлического никеля:

    Ni + 4 CO → Ni (CO) 4 (1 бар, 55 ° C)

По этой причине, никель в трубке или ее части не должен вступать в длительный контакт с окисью углерода. Карбонил никеля легко разлагается обратно до Ni и СО при контакте с горячими поверхностями, и этот метод используется для промышленной очистки никеля в процессе Монда. В карбониле никеля и других карбонилах, электронная пара на углероде взаимодействует с металлом; окись углерода жертвует электронную пару металлу. В таких ситуациях, окись углерода называется карбонильным лигандом. Одним из наиболее важных карбонил металлов является пентакарбонил железа, Fe (CO) 5. Многие комплексы металл-CO получают путем декарбонилирования органических растворителей, а не из СО. Например, трихлорид иридия и трифенилфосфин реагируют в кипящем 2-метоксиэтаноле или ДМФ, с получением IrCl (CO) (PPh3) 2. Карбонилы металлов в координационной химии обычно изучаются с помощью инфракрасной спектроскопии.

Органическая химия и химия основных групп элементов

В присутствии сильных кислот и воды, окись углерода вступает в реакцию с алкенами с образованием карбоновых кислот в процессе, известном как реакции Коха-Хаафа. В реакции Гаттермана-Коха, арены преобразуются в бензальдегидные производные в присутствии AlCl3 и HCl. Литийорганические соединения (например, бутиллитий) вступают в реакцию с окисью углерода, но эти реакции мало научно применимы. Несмотря на то, что CO реагирует с карбокатионами и карбанионами, он относительно нереакционноспособен к органическим соединениям без вмешательства металлических катализаторов. С реагентами из основной группы, СО проходит несколько примечательных реакций. Хлорирование СО является промышленным процессом, приводящим к образованию важного соединения фосгена. С бораном, СО образует аддукт, H3BCO, который является изоэлектронным с катионом ацилия +. СО вступает в реакцию с натрием, создавая продукты, полученные из связи С-С. Соединения циклогексагегексон или триквиноил (C6O6) и циклопентанепентон или лейконовая кислота (C5O5), которые до сих пор получали лишь в следовых количествах, можно рассматривать как полимеры окиси углерода. При давлении более 5 ГПа, окись углерода превращается в твердый полимер углерода и кислорода. Это метастабильное вещество при атмосферном давлении, но оно является мощным взрывчатым веществом.

Использование

Химическая промышленность

Окись углерода представляет собой промышленный газ, который имеет множество применений в производстве сыпучих химических веществ. Большие количества альдегидов получают путем реакции гидроформилирования алкенов, окиси углерода и Н2. Гидроформилирование в процессе Шелла дает возможность создавать предшественники моющих средств. Фосген, пригодный для получения изоцианатов, поликарбонатов и полиуретанов, производится путем пропускания очищенного монооксида углерода и газообразного хлора через слой пористого активированного угля, который служит в качестве катализатора. Мировое производство этого соединения в 1989 году оценивалось в 2,74 млн тонн.

    CO + Cl2 → COCl2

Метанол получают путем гидрогенизации окиси углерода. В родственной реакции, гидрирование окиси углерода связано с образованием связи С-С, как в процессе Фишера-Тропша, где окись углерода гидрогенизируется до жидких углеводородных топлив. Эта технология позволяет преобразовывать уголь или биомассы в дизельное топливо. В процессе Монсанто, окись углерода и метанол реагируют в присутствии катализатора на основе родия и однородной иодистоводородной кислоты с образованием уксусной кислоты. Этот процесс отвечает за большую часть промышленного производства уксусной кислоты. В промышленных масштабах, чистая окись углерода используется для очистки никеля в процессе Монда.

Окраска мяса

Окись углерода используется в модифицированных атмосферных системах упаковки в США, в основном, при упаковке свежих мясных продуктов, таких как говядина, свинина и рыба, чтобы сохранять их свежий внешний вид. Окись углерода соединяется с миоглобином с образованием карбоксимиоглобина, ярко-вишнево-красного пигмента. Карбоксимиоглобин является более стабильным, чем окисленная форма миоглобина, оксимиоглобин, который может окислиться до коричневого пигмента метмиоглобина. Этот стабильный красный цвет может сохраняться гораздо дольше, чем обычное упакованное мясо. Типичные уровни окиси углерода, используемые в установках, использующих этот процесс, составляют от 0,4% до 0,5%. Эта технология впервые признана «в целом безопасной» (GRAS) Управлением по контролю за продуктами и лекарствами США (FDA) в 2002 году для использования в качестве вторичной упаковочной системы, и не требует маркировки. В 2004 году FDA одобрило CO в качестве основного метода упаковки, заявив, что CO не скрывает запаха порчи. Несмотря на это постановление, остается спорным вопрос о том, маскирует ли этот метод порчу продуктов. В 2007 году, в Палате представителей США был предложен законопроект, предлагающий называть модифицированный процесс упаковки с использованием окиси углерода цветовой добавкой, но законопроект не был принят. Такой процесс упаковки запрещен во многих других странах, включая Японию, Сингапур и страны Европейского Союза.

Медицина

В биологии, окись углерода естественным образом вырабатывается под действием гемоксигеназы 1 и 2 на гем от распада гемоглобина. Этот процесс производит определенное количество карбоксигемоглобина у нормальных людей, даже если они не вдыхают окись углерода. После первого доклада о том, что окись углерода является нормальным нейромедиатором в 1993 году, а также одним из трех газов, которые естественным образом модулируют воспалительные реакции в организме (два других – оксид азота и сероводород), окись углерода получила большое клиническое внимание как биологический регулятор. Во многих тканях, все три газа, как известно, действуют как противовоспалительные средства, вазодилататоры и усилители неоваскулярного роста. Тем не менее, эти вопросы являются сложными, поскольку неоваскулярный рост не всегда полезен, так как он играет определенную роль в росте опухоли, а также в развитии влажной макулодистрофии, заболевания, риск которого увеличивается от 4 до 6 раз при курении (главный источник окиси углерода в крови, в несколько раз больше, чем естественное производство). Существует теория, что в некоторых синапсах нервных клеток, когда откладываются долгосрочные воспоминания, принимающая клетка вырабатывает окись углерода, которая обратно передается к передающей камере, заставляющей её передаваться более легко в будущем. Некоторые такие нервные клетки, как было показано, содержат гуанилатциклазу, фермент, который активируется окисью углерода. Во многих лабораториях по всему миру были проведены исследования с участием монооксида углерода относительно его противовоспалительных и цитопротекторных свойств. Эти свойства могут быть использованы для предотвращения развития ряда патологических состояний, в том числе, ишемического реперфузионного повреждения, отторжения трансплантата, атеросклероза, тяжелого сепсиса, тяжелой малярии или аутоиммунных заболеваний. Были проведены клинические испытания с участием людей, однако их результаты еще не были выпущены.

Угарный газ (CO) – это бесцветный, очень легкий газ (легче воздуха), не имеющий запаха. А вот «запах угарного газа» чувствуется из-за примесей органических элементов в топливе. Угарный газ дома появляется каждый раз при сжигании дров. Основная причина возникновения угарного газа — недостаточное количество кислорода в области горения.

Возникновение угара

Угарный газ дома возникает при горении углерода из-за недостатка кислорода. Сгорание в печах топлива происходит в несколько этапов:

  1. Сначала углерод сгорает, выделяя углекислый газ CO2;
  2. Потом углекислый газ контактирует с раскаленными остатками кокса или угля, создавая угарный газ;
  3. Затем, угарный газ сгорает (синее пламя) с появлением углекислого газа, который выходит через дымоход.

Без тяги в печи (дымоход забит, нет для горения приточного воздуха, заслонка закрыта преждевременно), угли продолжают тлеть без слабой подачи кислорода, поэтому угарный газ не сгорает и может рассеяться по отапливаемому помещению, оказывая токсичный эффект на организм и отравление (угар).

Факторы отравления угаром

У угарного ядовитого газа нет запаха и цвета, что делает его очень опасным. Причинами отравления угаром могут стать:

  • Неисправная работа печки-камина и дымохода (забитый дымоход, трещины в печи).
  • Нарушение (закрытие печной заслонки несвоевременно, плохая тяга, недостаточный доступ в топливник свежего воздуха).
  • Присутствие человека в самом очаге пожара.
  • Техобслуживание автомашины в помещении с низкой вентиляцией.
  • Применение некачественного воздуха в аппаратах для дыхания и аквалангах.
  • Сон в автомашине с включенным двигателем.
  • Применение гриля с низкой вентиляцией.

Сигналы и признаки отравления

При малой концентрации газа могут образоваться первые признаки токсичного воздействия и отравления: слезотечение, головокружение и боль, тошнота и слабость, спутанность сознания, сухой кашель, бывают слуховые и зрительные галлюцинации. Ощутив симптомы отравления, нужно как можно быстрее выйти на свежий воздух.

При большом промежутке времени нахождения в помещении с низкой плотностью угарного газа, возникают симптомы отравления: тахикардия, нарушение дыхания, нарушение координации, сонливость, зрительные галлюцинации, посинение кожи лица и слизистых оболочек, рвота, потеря сознания, могут быть судороги.

При повышенной концентрации — происходит потеря сознания и коматоз с судорогой. Без первой медицинской помощи, пострадавший может умереть от отравления угаром.

Воздействие угарного газа в доме на человеческий организм

Угарный газ заходит через легкие, контактирует в крови с гемоглобином и препятствует передачи кислорода органам и тканям. От кислородного голодания нарушается нервная система и работа головного мозга. Чем выше концентрат угарного газа и больше период нахождения в комнате, тем сильнее отравление и больше вероятности смерти.

После отравления нужно медицинское наблюдение в течение нескольких дней, т. к. часто наблюдаются осложнения. Пострадавших с тяжелым отравлением нужно госпитализировать. Проблемы с нервной системой и легкими возможны даже через недели после происшествия. Любопытно, но на женщин угарный газ влияет меньше, чем на мужчин.

Датчик угарного газа для дома

Отравление или угар можно предотвратить, используя автономный сигнализатор угарного газа или датчик. Если объем угарного газа в жилом или техническом помещении перейдет допустимый уровень, датчик просигнализирует, предупреждая об угрозе. Сигнализаторы выявления угарного газа – это такие электрохимические датчики, разработанные для беспрестанного контроля уровня содержания CO в помещении и реагирующие световыми и звуковыми сигналами на высокий уровень концентрации в воздухе угарного газа.

Когда решите купить для дома сигнализатор угарного газа, обратите внимание на особенности (при внешнем сходстве) приборов: датчик открытого огня и сигнализатор дыма, датчик угарных газов и углекислого газа реагирует на разные элементы в воздухе комнаты. Датчики угарного газа для дома устанавливают на высоте полтора метра от пола (некоторые рекомендуют ставить от потолка на 15–20 см). Аппарат обнаружения углекислого газа ставится около панели приборов или на уровне пола (углекислый газ намного тяжелее чем воздух), а дымовой датчик должен быть на потолке.

Во многих странах применение вышеперечисленных датчиков — обязательное условие, предусмотренное законодательством для обеспечения безопасности и здоровья населения. В Европе – обязателен только дымовой датчик. У нас, установка датчика угарного газа пока что — дело добровольное. Такие датчики в целом недорогой прибор, поэтому лучше не рисковать своей жизнью и купить сигнализатор угарного газа для дома.

Как не отравится угарным газом в доме

Соблюдая правила безопасности, отравление угаром можно предупредить:

— Не используйте приборы, сжигающие топливо, без достаточных навыков, знаний и инструментов.

— Не жгите древесный уголь в комнате с плохой вентиляцией.

— Убедитесь в исправной работе печи, вытяжной и приточной вентиляции и дымохода.

— На дымовых каналах дровяных печей, следует предусмотреть монтаж последовательно 2 плотных задвижек, а на каналах печек, функционирующих на угле или торфе, лишь одной задвижки с отверстием 15 мм.

— Не оставляйте в гараже автомобиль с работающим двигателем.

Датчики, сигнализирующие об увеличении концентрации угарн.газа, могут дополнительно защитить от отравления, но они не должны заменять прочие профилактические работы.

Угарный газ при печном отоплении

Камин или печь с закрытой задвижкой и остатками недогоревшего топлива - источник угарного газа и невидимый отравитель. Предполагая, что топливо полностью сгорело, владельцы печек закрывают заслонку дымохода для сохранности тепла. Тлеющие угольки при недостатке воздуха создают угарный газ, проникающий в помещение через негерметичные зоны печной системы.

Также и в дымоходе, при слабой тяге и без подачи воздуха возникает химический недожог топлива, и в итоге — возникновение и накопление угарного газа дома.

Угарный газ, или монооксид углерода (химическая формула CO) – это крайне ядовитый бесцветный газ. Он является обязательным продуктом неполного сгорания углеродосодержащих веществ: определяется в автомобильных выхлопных газах, сигаретном дыме, в дыме при пожарах и т. д. Запаха у угарного газа нет, поэтому выявить его наличие и оценить концентрацию во вдыхаемом воздухе без приборов невозможно.

Источник: depositphotos.com

Попадая в кровь, монооксид углерода вытесняет кислород из связи с дыхательным белком гемоглобином и тормозит функционирование активных центров, отвечающих за образование нового гемоглобина, тем самым вызывая острое кислородное голодание тканей. Помимо этого, угарный газ нарушает протекание окислительных процессов в организме.

Угарный газ, обладающий высоким сродством к дыхательному белку, присоединяется к нему намного активнее кислорода. Например, если концентрация СО во вдыхаемом воздухе всего 0,1% от общего объема (соотношение монооксида углерода и кислорода 1:200 соответственно), гемоглобин будет связывать равные количества обоих газов, т. е. половина циркулирующего в системном кровотоке дыхательного белка будет занята угарным газом.

Распад молекулы карбоксигемоглобина (гемоглобин-угарный газ) происходит приблизительно в 10000 раз медленнее, чем молекулы оксигемоглобина (гемоглобин-кислород), что обуславливает опасность и тяжесть отравления.

Выхлопные газы автомобиля максимально содержат 13,5% угарного газа, в среднем 6-6,5%. Так, маломощный мотор в 20 л. с. продуцирует до 28 литров СО в минуту, создавая в замкнутом помещении (гараж, ремонтный бокс) смертельную концентрацию газа в воздухе в течение 5 минут.

Характерные симптомы отравления появляются через 2–6 ч вдыхания воздуха, содержащего 0,22-0,23 мг угарного газа на 1 литр; тяжелое отравление с потерей сознания и смертельным исходом может развиться через 20-30 мин при концентрации монооксида углерода 3,4–5,7 мг/л и через 1-3 мин при концентрации яда 14 мг/л.

Отравление угарным газом чаще всего происходит в следующих случаях:

  • неправильная эксплуатация или неисправность печного оборудования, газовых отопительных приборов;
  • пребывание в невентилируемом замкнутом помещении при включенном автомобильном двигателе;
  • пожар;
  • тление электропроводки, бытовых приборов, деталей интерьера и мебели;
  • нарушение техники безопасности при работе на химическом производстве, где используется монооксид углерода.

Вероятность отравления прямо пропорциональна концентрации угарного газа во вдыхаемом воздухе и времени его воздействия на организм.

Симптомы отравления

Наиболее чувствительна к изменению уровня кислорода в крови нервная система. Степень поражения может варьировать от легкого обратимого до генерализованного, влекущего за собой временную или постоянную инвалидизацию, а в особо тяжелых случаях – смерть пострадавшего.

Помимо нервной, наиболее часто в патологический процесс вовлекаются дыхательная (трахеит, трахеобронхит, пневмония) и сердечно-сосудистая (дистрофия и некротизация миокарда, дегенеративные изменения стенок сосудов) системы.

В зависимости от концентрации СО в воздухе и, соответственно, карбоксигемоглобина в крови, выделяют несколько степеней отравления угарным газом.

Симптомы легкого отравления (содержание карбоксигемоглобина в крови не превышает 30%):

  • сознание сохранено;
  • сжимающая, давящая головная боль, напоминающая стягивание обручем;
  • головокружение, шум, звон в ушах;
  • слезотечение, обильное отделяемое из носа;
  • тошнота, рвота;
  • возможны легкие преходящие нарушения зрения;
  • затруднение дыхания;
  • першение в горле, сухой кашель.

Отравление средней степени тяжести (развивается при концентрации карбоксигемоглобина в крови от 30 до 40%):

  • кратковременная потеря или другие нарушения сознания (оглушение, сопорозное состояние или кома);
  • затруднение дыхания, интенсивная одышка;
  • стойкое расширение зрачков, анизокория (зрачки разного размера);
  • галлюцинации, бред;
  • тонические или клонические судороги;
  • тахикардия, давящие боли за грудиной;
  • гиперемия кожных покровов и видимых слизистых оболочек;
  • дискоординация;
  • нарушения зрения (снижение остроты, мелькание мушек);
  • снижение остроты слуха.

При тяжелом отравлении (концентрация карбоксигемоглобина 40-50%):

  • кома различной глубины и длительности (до нескольких суток);
  • тонические или клонические судороги, параличи, парезы;
  • непроизвольное мочеиспускание и/или дефекация;
  • слабый нитевидный пульс;
  • поверхностное прерывистое дыхание;
  • цианоз кожных покровов и видимых слизистых оболочек.

Помимо классических проявлений отравления угарным газом, возможно развитие нетипичной симптоматики при одной из следующих форм:

  • обморочная – характеризуется резким снижением артериального давления (до 70/50 мм.рт.ст. и ниже) и потерей сознания;
  • эйфоричная – резкое психомоторное возбуждение, снижение критики, нарушение ориентации во времени и пространстве, возможны галлюцинации и бред;
  • молниеносная – развивается при концентрации СО во вдыхаемом воздухе 1,2% и более, содержание карбоксигемоглобина в системном кровотоке в этом случае превышает 75%. Смерть пострадавшего наступает стремительно, через 2-3 минуты.

О том, насколько опасен угарный газ для человека, знают все, кому приходилось сталкиваться с работой отопительных систем, — печек, котлов, бойлеров, водогрейных колонок, рассчитанных на бытовое топливо в любой его форме. Нейтрализовать его в газовом состоянии довольно сложно, эффективных домашних способов бороться с угарным газом не существует, поэтому большая часть защитных мероприятий направлена на предупреждение и своевременное выявление угара в воздухе.

Свойства токсичного вещества

В природе и свойствах угарного газа нет ничего необычного. По сути, это продукт частичного окисления угля или угольсодержащих видов топлива. Формула угарного газа проста и незамысловата – СО, в химических терминах — монооксид углерода. Один атом углерода соединен с атомом кислорода. Так уж устроена природа процессов горения органического топлива, что угарный газ является неотъемлемой частью любого пламени.

Угли, родственные им виды топлива, торф, дрова при нагреве в топке газифицируются в угарный газ, и только потом дожигаются притоком воздуха. Если угар просочился из камеры горения в помещение, то он будет оставаться в стабильном состоянии до момента, когда вентиляцией угарный поток будет вынесен из комнаты или накапливаться, заполняя все пространство, от пола до потолка. В последнем случае спасти положение может только электронный датчик угарного газа, реагирующий на малейшее повышение концентрации токсичного угара в атмосфере помещения.

Что необходимо знать об угарном газе:

  • В стандартных условиях плотность угарного газа – 1,25 кг/м 3 , что очень близко к удельному весу воздуха 1,25 кг/м 3 . Горячий и даже теплый монооксид легко поднимается под потолок, по мере остывания оседает и перемешивается с воздухом;
  • Угарный газ не имеет вкуса, цвета и запаха, даже в условиях высокой концентрации;
  • Для начала образования угарного газа достаточно нагреть металл, контактирующий с углеродом, до температуры в 400-500 о С;
  • Газ способен гореть в воздухе с выделением большого количества тепла, примерно 111 кДж/моль.

Опасно не только вдыхание угарного газа, газовоздушная смесь способна взрываться при достижении объемной концентрации от 12,5% до 74%. В этом смысле газовая смесь похожа на бытовой метан, но гораздо опаснее сетевого газа.

Метан легче воздуха и менее токсичен при вдыхании, кроме того, благодаря добавке в газовый поток специальной присадки – меркаптана, его наличие в помещении легко уловить по запаху. При небольшой загазованности кухни можно без последствий для здоровья войти в помещение и проветрить его.

С угарным газом все сложнее. Близкое родство СО и воздуха препятствует эффективному удалению токсичного газового облака. По мере охлаждения облако газа будет постепенно оседать в области пола. Если сработал датчик угарного газа, или обнаружилась утечка продуктов горения из печи или котла на твердом топливе, необходимо немедленно принимать меры к проветриванию, иначе первыми пострадают дети и домашние питомцы.

Подобное свойство угарного облака ранее широко использовалось для борьбы с грызунами и тараканами, но эффективность газовой атаки значительно ниже современных средств, а риск заработать отравление несоизмеримо выше.

К сведению! Газовое облако СО, при отсутствии вентиляции, способно сохранять свои свойства без изменений длительное время.

При наличии подозрения в накоплении угарного газа в подвальных помещения, подсобках, котельных, погребах первым делом необходимо обеспечить максимальное проветривание с кратностью газообмена 3-4 единицы в течение часа.

Условия появления угара в помещении

Монооксид углерода можно получить с помощью десятков вариантов химических реакций, но для этого необходимы специфические реактивы и условия их взаимодействия. Риск заработать отравление газом таким способом практически равен нулю. Основными причинами появления угарного газа в котельной или в помещении кухни остаются два фактора:

  • Плохая тяга и частичное перетекание продуктов горения из очага горения в помещение кухни;
  • Неправильная эксплуатация котельного, газового и печного оборудования;
  • Пожары и локальные очаги возгорания пластика, проводки, полимерных покрытий и материалов;
  • Отходящие газы из канализационных коммуникаций.

Источником угарного газа может стать вторичное горение золы, рыхлых отложений сажи в дымоходах, копоть и смола, въевшиеся в кирпичную кладку каминных полок и сажегасителей.

Чаще всего источником газового СО становятся тлеющие угли, догорающие в топке при закрытой задвижке. Особенно много выделяется газа при термическом разложении дров в отсутствии воздуха, примерно половину газового облака занимает угарный газ. Поэтому любые эксперименты с копчением мяса и рыбы на дымке, получаемом от тлеющей стружки, должны выполняться только на открытом воздухе.

Незначительное количество угарного газа может появляться и в процессе приготовления пищи. Например, все, кто сталкивался с установкой на кухне газовых отопительных котлов с закрытой топкой, знают, как реагируют датчики угарного газа на жареную картошку или любые продукты, приготовленные в кипящем масле.

Коварный характер угарного газа

Главная опасность монооксида углерода заключается в том, что невозможно ощутить и почувствовать его присутствие в атмосфере помещения до того момента, как газ попадет с воздухом в органы дыхания и растворится в крови.

Последствия от вдыхания СО зависят от концентрации газа в воздухе и длительности пребывания в помещении:

  • Головная боль, недомогание и развитие сонливого состояния начинается при объемном содержании газа в воздухе 0,009-0,011%. Физически здоровый человек способен выдержать до трех часов пребывания в загазованной атмосфере;
  • Тошнота, сильная боль в мышцах, судороги, обмороки, потеря ориентации могут развиться при концентрации 0,065-0,07%. Время пребывания в помещении до момента наступления неотвратимых последствий всего1,5-2 ч;
  • При концентрации угарного газа выше 0,5% даже несколько секунд пребывания в загазованном пространстве означают летальный исход.

Даже если человек благополучно самостоятельно выбрался из помещения с высокой концентрацией угарного газа, все равно потребуется медицинская помощь и использование антидотов, так как последствия отравления кровеносной системы и нарушения кровообращения мозга все равно проявятся, только чуть позже.

Молекулы угарного газа хорошо поглощаются водой и солевыми растворами. Поэтому в качестве первого подручного средства защиты нередко используются обычные полотенца, салфетки, смоченные любой доступной водой. Это позволяет остановить попадание угарного газа в организм на несколько минут, пока появится возможность покинуть помещение.

Нередко этим свойством монооксида углерода злоупотребляют некоторые владельцы отопительной аппаратуры, в которой встроены датчики СО. При срабатывании чувствительного сенсора, вместо проветривания помещения, зачастую прибор просто накрывают мокрым полотенцем. Как результат, после десятка подобных манипуляций датчик угарного газа выходит из строя, и на порядок возрастает риск заработать отравление.

Технические системы регистрации угарного газа

По сути, сегодня существует только один способ успешно бороться с угарным газом, использовать специальные электронные приборы и датчики, регистрирующие превышение концентрации СО в помещении. Можно, конечно, поступить проще, например, обустроить мощную вентиляцию, как это делают любители отдыха у настоящего кирпичного камина. Но в подобном решении есть определенный риск заработать отравление угарным газом при смене направления тяги в трубе, а кроме того, жить под сильным сквозняком тоже не очень полезно для здоровья.

Устройство датчиков наличия угарного газа

Проблема контроля над содержанием угарного газа в атмосфере жилых и подсобных помещений на сегодня настолько же злободневна, как и наличие пожарной или охранной сигнализации.

В специализированных салонах отопительного и газового оборудования можно приобрести несколько вариантов приборов контроля над содержанием газа:

  • Химические сигнализаторы;
  • Инфракрасные сканеры;
  • Твердотельные датчики.

Чувствительный сенсор прибора обычно комплектуется электронной платой, обеспечивающей питание, калибровку и преобразование сигнала в понятную форму индикации. Это могут быть просто зеленые и красные светодиоды на панели, звуковая сирена, цифровая информация для выдачи сигнала в компьютерную сеть или управляющий импульс для автоматического клапана, перекрывающего подачу бытового газа к отопительному котлу.

Понятно, что использование датчиков с управляемым запирающим клапаном является вынужденной мерой, но зачастую производители отопительного оборудования намеренно встраивают «защиту от дурака», чтобы избежать всевозможных манипуляций с безопасностью газового оборудования.

Химические и твердотельные приборы контроля

Наиболее дешевая и доступная версия датчика с химическим индикатором изготавливается в виде сетчатой колбы, легко проницаемой для воздуха. Внутри колбы находится два электрода, разделенных пористой перегородкой, пропитанной раствором щелочи. Появление угарного газа приводит к карбонизации электролита, проводимость сенсора резко падает, что немедленно считывается электроникой в качестве сигнала тревоги. После установки прибор находится в неактивном состоянии и не срабатывает до тех пор, пока в воздухе не появятся следы угарного газа, превышающие допустимую концентрацию.

В твердотельных датчиках вместо пропитанного щелочью куска асбеста используются двухслойные пакеты из диоксидов олова и рутения. Появление газа в воздухе вызывает пробой между контактами сенсорного устройства и автоматически запускает сигнал тревоги.

Сканеры и электронные сторожа

Инфракрасные датчики, работающие по принципу сканирования окружающего воздуха. Встроенный инфракрасный сенсор воспринимает свечение лазерного светодиода, и по изменению интенсивности поглощения газом теплового излучения срабатывает триггерное устройство.

СО очень хорошо поглощает тепловую часть спектра, поэтому подобные приборы работают в режиме сторожа или сканера. Результат сканирования может выдаваться в виде двухцветного сигнала или индикации величины содержания угарного газа в воздухе на цифровой или линейной шкале.

Какой датчик лучше

Для правильного подбора сенсора наличия угарного газа необходимо учитывать режим работы и характер помещения, в котором предстоит установить сенсорное устройство. Например, химические датчики, считающиеся устаревшими, прекрасно работают в условиях котельных и подсобных помещений. Недорогой прибор для обнаружения угарного газа можно установить на даче или в мастерской. На кухне сетка быстро покрывается пылью и жировыми отложениями, что резко снижает чувствительность химической колбочки.

Полупроводниковые сенсоры угарного газа работают одинаково хорошо в любых условиях, но для их функционирования требуется мощный внешний источник питания. Стоимость прибора выше, чем цена на химические сенсорные системы.

Инфракрасные датчики на сегодня наиболее распространены. Они активно используются для комплектации систем безопасности квартирных котлов индивидуального отопления. При этом чувствительность системы контроля практически не меняется с течением времени из-за пыли или температуры воздуха. Мало того, такие системы, как правило, имеют встроенные механизмы тестирования и калибровки, что позволяет периодически проверять их работоспособность.

Установка приборов контроля над содержанием угарного газа

Сенсоры, осуществляющие контроль над содержанием угарного газа, должны устанавливаться и обслуживаться исключительно профильными специалистами. Периодически приборы подлежат проверке, калибровке, обслуживанию и замене.

Датчик должен устанавливаться на удалении от источника газа от 1 до 4 м, корпус или выносные сенсоры крепятся на высоте 150 см над уровнем пола и обязательно калибруются по верхнему и нижнему порогу чувствительности.

Срок службы квартирных датчиков угарного газа составляет 5 лет.

Заключение

Борьба с образованием угарного газа требует аккуратности и ответственного отношения к установленной аппаратуре. Любые эксперименты с сенсорами, особенно полупроводникового типа, резко снижают чувствительность прибора, что в конечном итоге приводит к увеличению содержания угарного газа в атмосфере кухни и всей квартиры, медленному отравлению всех ее обитателей. Проблема контроля угарного газа настолько серьезна, что, возможно, использование сенсоров в будущем могут сделать обязательным для всех категорий индивидуального отопления.

У него нет ни цвета, ни запаха. Но он – смертельно опасен.

Эксперты

Сергей Мусселиус
доктор медицинских наук, профессор, врач –токсиколог, преподаватель факультета фундаментальной медиц


Опрос собственников жилья в 6 городах агентством «Ромир-мониторинг» показал:

81% опрошенных - не осознают опасность отравления угарным газом;

60% - не знают, что такое отравление может привести к смерти;

27%- считают, что почувствуют запах угарного газа в случае его утечки;

94%- не имеют датчиков для обнаружения угарного газа;

52% - считают, что при появлении угарного газа достаточно просто проветрить помещение, чтобы не отравиться.

Как образуется угарный газ?

Из школьной программы мы знаем: для горения нужен кислород. Угарный газ образуется, когда кислорода не хватает и углеродсодержащее топливо (дрова, торф, бумага, уголь, брикеты, бензин, природный газ) сгорает не полностью. Отравиться на улице, допустим, у костра, невозможно. Вокруг много кислорода, в результате при горении образуется малотоксичный углекислый газ СО2. И даже если топливо горит плохо или тлеет (угли в мангале), угарный газ мгновенно растворяется в воздухе. Опасный угарный газ СО образуется в помещении при нехватке кислорода (топливо тлеет, но не горит активно). Многие считают, что угарный газ можно ощутить носом, как тот, что горит в конфорках газовых плит. Как известно, его специально «ароматизируют» так называемым меркаптаном, сильнопахнущим веществом, которое добавляют к природному газу в газохранилищах, чтобы по запаху обнаружить утечку. С угарным газом так поступить невозможно - ведь он образуется сам.

ПТИЧКУ ЖАЛКО!

Самым первым индикатором угарного газа были… канарейки. При малейшем повышении концентрации СО они сразу замолкали и валились с жердочки.

Чтобы защитить себя и близких от отравления угарным газом, специалисты советуют держать оборудование исправным, проветривать помощение, не находиться в гараже с закрытыми дверями при работающем двигателе. А еще установить недорогие детекторы угарного газа. Если содержание угарного газа повысится, датчик начнет издавать прерывистые сигналы, если аварийный порог будет нарушен критично - непрерывные.

В чем опасность угарного газа?

Когда угарный газ проникает в легкие, а затем и в кровь, он очень прочно связывается с гемоглабином. При этом образуется так называемый карбоксигемоглобин, токсичное вещество, которое блокирует поступление кислорода в кровь. В результате наступает кислородное голодание: страдают клетки головного мозга, нарастает гипоксия. Самое опасное, что первые признаки отравления сам человек и окружающие обычно принимают за усталость. В последствие появляется

Головная боль и головокружение, одышка. Человек может потерять сознание, у него могут развиться сердечная недостаточность, инфаркт, инсульт по типу ишемического, в тяжелых случаях - кома и смерть. Страдают все органы - сердце, почки, печень, легкие. Расслабляется гладкая мускулатура. В результате человек, даже если понимает, что ему нужно срочно выйти на воздух, не может сделать ни шага из-за мышечной слабости. Расслабляются, теряя упругость, и артерии. Если пострадавший при этом лежит, пережимаются артерии, что окончательно перекрывает доступ крови к органам.

ПОСЛЕ ОТРАВЛЕНИЯ.

При сильном отравлении, даже если человек выжил, он может пребывать в вегетативном состоянии и никогда не восстановиться полностью. В других случаях на восстановление могут уйти недели, месяцы и годы. Если отравление было не очень сильным, его признаки могут проявиться и через 1-6 недель. Примерно треть пострадавших частично теряют память, у них появляются головные боли, нарушаются функции движения, ухудшается характер, ухудшается способность мыслить абстрактно и самокритично. Нарушаются зрение и слух.

Кто в группе риска:

Жители загородных домов, где есть печи, камины, бензо- и дизельводонагреватели. Часто причиной отравления становится плохая тяга из-за неправильной кладки печи или камина, забитого сажей дымохода. В последнее время участились случаи, когда взрослые дети покупают загородные дома родителям, которые до того жили в городе и просто не знают, как правильно топить;

Городские жители, которые приехали на отдых (частый случай - новогодние каникулы!) в арендованные загородные коттеджи и, толком не умея, решают протопить дом. Разжигается печь, в доме становится тепло, уютно. И в этот момент кто-то решает, что все тепло уходит через трубу, поэтому нужно закрыть заслонку печи или камина и окна.

Парочки, уединившиеся в машине в закрытом гараже. Включив автомобильную печку, они поддерживают романтическое настроение алкоголем и воздействие угарного газа обычно принимают за опьянение.Чтобы прийти в себя, решают слегка вздремнуть. Многие не просыпаются;

Автовладельцы, которые чинять машины самостоятельно, при закрытых дверях гаража;

Любители курить в постели. Если заснуть с непотушенной сигаретой, необязательно это приводит к пожару. Начинает тлеть одеяло, ковер, а пламени нет. Если окна закрыты, отравление СО гарантировано;

Владельцы газовых плит. Если в процессе работы горелку задувает, газ начнет сгорать не полностью. Угарный газ может также появиться, если готовить пищу в посуде с очень широким дном. При этом нарушается приток кислорода к горелке и образуется угарный газ. По этой же причине нельзя готовить сразу на всех конфорках или обогревать помещение с помощью газовой плиты. В кухне при горении 3 горелок в течение 2 часов концентрация СО увеличивается в 11 раз!

Жители современных квартир, нарушающие перепланировкой естественную тягу. При ремонтах они ставят межкомнатные двери без зазоров снизу, уничтожают воздуховоды, чтобы увеличить площадь кухни, ставят пластиковые окна, которые не пропускают воздух.

ФОРМА ОТРАВЛЕНИЯ ЗАВИСИТ ОТ КОНЦЕНТРАЦИИ УГАРНОГО ГАЗА.

3-я, легкая, степень: СО в воздухе не более 0,08%, содержание карбоксигемоглобина в крови не более 30%. У пострадавшего головная боль, головокружение, тошнота, рвота.

Помощь окружающих: открыть окна и двери, вынести пострадавшего на улицу. Госпитализация не обязательна.

2-я, средняя, степень: СО в воздухе не более 0,32%, содержание карбоксигемоглобина в крови 30-40%. Пострадавший теряет сознание, у него повышается артериальное давление, учащается пульс, возможны галлюцинации.

Помощь окружающих:

Надеть на пострадавшего кислородную маску или противогаз с особым гопкалитовым патроном (повышает защиту от СО).

Подключить пострадавшего к кислородному баллону на 2-3 часа. Госпитализация обязательна.

1-я, тяжелая, степень: СО в воздухе более 1,2%, содержание карбоксигемоглобина в крови 50% - прерывистое дыхание, понижение артериального давления вплоть до коллапса, резкий цианоз (побледнение) слизистых, судороги, кома.

Если концентрация СО очень большая, достаточно 1-2 вдохов, чтобы умереть.

Помощь окружающих: открыть окна и двери, вынести пострадавшего на улицу, вызвать спасателей и врачей.

Оказывается спасателями и медиками: надеть на пострадавшего кислородную маску или противогаз с гопкалитовым патроном (повышает защиту от СО). Подключить пострадавшего к кислородному баллону на 2-3 часа.

Госпитализация обязательна. При доставке в клинику проводится аппаратная вентиляция легких.

Во всех трех случаях пострадавшему дают антидот к угарному газу, который разработан в России. Он снижает интоксикацию, ускоряет выведение СО из организма, снижает потребность в кислороде, способствует повышению устойчивости наиболее чувствительных к гипоксии органов.