Механические характеристики меди. Медь как металл и сырье в строительстве: ее особенности и нюансы обработки

Один из самых первых металлов, который стали применять в ковке. Еще в бронзовый век человек освоил искусство изготовления оружия и орудий труда из мягкой и пластичной меди, и до сих пор этот металл продолжает широко использоваться в художественной ковке.

Этому есть объяснение: медь проявляет низкую химическую активность при взаимодействии с другими химическими элементами. Это значит, что медь отлично подходит для создания металлических композиций, как экстерьерного, так и интерьерного назначения, ведь она демонстрирует высочайшую коррозионную устойчивость в условиях воздействия неблагоприятных факторов окружающей среды.

Конечно, не каждому понравится внешний вид защитного внешнего слоя медной поверхности, но зеленая патина отлично защищает медь от коррозии. Правда, патина, представляющая собой карбонат меди, наносит существенный вред здоровью человека, поэтому медные композиции нужно покрывать защитной краской, предупреждающей образование зеленой пленки.

Первоначально медное изделие имеет блестящий красно-золотистый цвет, потом приобретает коричневый и черный оттенки, а через 20 лет становится насыщенно зеленым. Патина может покрыть металлическую поверхность и раньше, особенно есть металл постоянно подвергается воздействию влаги.


Свойства меди
Ковкость и пластичность меди очень высоки - их нее можно выковать практически любую форму, даже геометрическую со сложными изгибами.

У меди хорошая теплопроводность, а ее физико-механические характеристики напрямую зависят от качества ее обработки. Из руды получают так называемую черновую медь, которая не годится для кузнечных целей. Сперва металл должен пройти стадию огневого рафинирования, в результате которого выжигается большее количество примесей (например, висмута и свинца). Чтобы полностью освободить медный сплав от включений, применяют электролитическое рафинирование. Вот из этой меди потом вытягивают проволоку, медные листы, слитки и т.д.

В художественной ковке редко применяется чистая медь - в нее добавляют лигатуру, которая в определенных концентрациях способна придавать сплаву те или иные физические свойства. Некоторые медные сплавы даже получили свое собственное название, например, латунь и бронза.

В большинстве случаев лигатура добавляется для того, чтобы придать мягкой и легко деформирующейся меди хоть немного твердости. Чистая медь плохо подходит для литья и ковки - появляются нелицеприятные пузыри.

После литья медное изделие часто гравируют, а также эмалируют выемочным и перегородочным способами.

Свойства меди, которая в природе встречается и в виде достаточно крупных самородков, люди изучили еще в древние времена, когда из этого металла и его сплавов делали посуду, оружие, украшения, различные изделия бытового назначения. Активное использование данного металла на протяжении многих лет обусловлено не только его особыми свойствами, но и простотой обработки. Медь, которая присутствует в руде в виде карбонатов и окислов, достаточно легко восстанавливается, что и научились делать наши древние предки.

Изначально процесс восстановления этого металла выглядел очень примитивно: медную руду просто нагревали на кострах, а затем подвергали резкому охлаждению, что приводило к растрескиванию кусков руды, из которых уже можно было извлекать медь. Дальнейшее развитие такой технологии привело к тому, что в костры начали вдувать воздух: это повышало температуру нагревания руды. Затем нагрев руды стали выполнять в специальных конструкциях, которые и стали первыми прототипами шахтных печей.

О том, что медь используется человечеством с древних времен, свидетельствуют археологические находки, в результате которых были найдены изделия из данного металла. Историками установлено, что первые изделия из меди появились уже в 10 тысячелетии до н.э, а наиболее активно она стала добываться, перерабатываться и использоваться спустя 8–10 тысяч лет. Естественно, предпосылками к такому активному использованию данного металла стали не только относительная простота его получения из руды, но и его уникальные свойства: удельный вес, плотность, магнитные свойства, электрическая, а также удельная проводимость и др.

В наше время уже сложно найти в виде самородков, обычно ее добывают из руды, которая подразделяется на следующие виды.

  • Борнит - в такой руде медь может содержаться в количестве до 65%.
  • Халькозин, который также называют медным блеском. В такой руде меди может содержаться до 80%.
  • Медный колчедан, также называемый халькопиритом (содержание до 30%).
  • Ковеллин (содержание до 64%).

Медь также можно извлекать из множества других минералов (малахит, куприт и др.). В них она содержится в разных количествах.

Физические свойства

Медь в чистом виде представляет собой металл, цвет которого может варьироваться от розового до красного оттенка.

Радиус ионов меди, имеющих положительный заряд, может принимать следующие значения:

  • если координационный показатель соответствует 6-ти - до 0,091 нм;
  • если данный показатель соответствует 2 - до 0,06 нм.

Радиус атома меди составляет 0,128 нм, также он характеризуется сродством к электрону, равном 1,8 эВ. При ионизации атома данная величина может принимать значение от 7,726 до 82,7 эВ.

Медь - это переходный металл, показатель электроотрицательности которого составляет 1,9 единиц по шкале Полинга. Кроме этого, его степень окисления может принимать различные значения. При температурах, находящихся в интервале 20–100 градусов, его теплопроводность составляет 394 Вт/м*К. Электропроводность меди, которую превосходит лишь серебро, находится в интервале 55,5–58 МСм/м.

Так как медь в потенциальном ряду стоит правее водорода, она не может вытеснять этот элемент из воды и различных кислот. Ее кристаллическая решетка имеет кубический гранецентрированный тип, величина ее составляет 0,36150 нм. Плавится медь при температуре 1083 градусов, а температура ее кипения - 26570. Физические свойства меди определяет и ее плотность, которая составляет 8,92 г/см3.

Из ее механических свойств и физических показателей стоит также отметить следующие:

  • термическое линейное расширение - 0,00000017 единиц;
  • предел прочности, которому медные изделия соответствуют при растяжении, составляет 22 кгс/мм2;
  • твердость меди по шкале Бринелля соответствует значению 35 кгс/мм2;
  • удельный вес 8,94 г/см3;
  • модуль упругости составляет 132000 Мн/м2;
  • значение относительного удлинения равно 60%.

Совершенно уникальными можно считать магнитные свойства данного металла, который является полностью диамагнитным. Именно эти свойства, наряду с физическими параметрами: удельным весом, удельной проводимостью и другими, в полной мере объясняют широкую востребованность данного металла при производстве изделий электротехнического назначения. Похожими свойствами обладает алюминий, который также успешно используется при производстве различной электротехнической продукции: проводов, кабелей и др.

Основную часть характеристик, которыми обладает медь, практически невозможно изменить, за исключением предела прочности. Данное свойство можно улучшить практически в два раза (до 420–450 МН/м2), если осуществить такую технологическую операцию, как наклеп.

Химические свойства

Химические свойства меди определяются тем, какое положение она занимает в таблице Менделеева, где она имеет порядковый номер 29 и располагается в четвертом периоде. Что примечательно, она находится в одной группе с благородными металлами. Это лишний раз подтверждает уникальность ее химических свойств, о которых следует рассказать более подробно.

В условиях невысокой влажности медь практически не проявляет химическую активность. Все меняется, если изделие поместить в условия, характеризующиеся высокой влажностью и повышенным содержанием углекислого газа. В таких условиях начинается активное окисление меди: на ее поверхности формируется зеленоватая пленка, состоящая из CuCO3, Cu(OH)2 и различных сернистых соединений. Такая пленка, которая называется патиной, выполняет важную функцию защиты металла от дальнейшего разрушения.

Окисление начинает активно происходить и тогда, когда изделие подвергается нагреву. Если металл нагреть до температуры 375 градусов, то на его поверхности формируется оксид меди, если выше (375-1100 градусов) - то двухслойная окалина.

Медь достаточно легко реагирует с элементами, которые входят в группу галогенов. Если металл поместить в пары серы, то он воспламенится. Высокую степень родства он проявляет и к селену. Медь не вступает в реакцию с азотом, углеродом и водородом даже в условиях высоких температур.

Внимание заслуживает взаимодействие оксида меди с различными веществами. Так, при его взаимодействии с серной кислотой образуется сульфат и чистая медь, с бромоводородной и иодоводородной кислотой - бромид и иодид меди.

Иначе выглядят реакции оксида меди с щелочами, в результате которых образуется купрат. Получение меди, при котором металл восстанавливается до свободного состояния, осуществляют при помощи оксида углерода, аммиака, метана и других материалов.

Медь при взаимодействии с раствором солей железа переходит в раствор, при этом железо восстанавливается. Такая реакция используется для того, чтобы снять напыленный медный слой с различных изделий.

Одно- и двухвалентная медь способна создавать комплексные соединения, отличающиеся высокой устойчивостью. Такими соединениями являются двойные соли меди и аммиачные смеси. И те и другие нашли широкое применение в различных отраслях промышленности.

Области применения меди

Применение меди, как и наиболее схожего с ней по своим свойствам алюминия, хорошо известно - это производство кабельной продукции. Медные провода и кабели, характеризуются невысоким электрическим сопротивлением и особыми магнитными свойствами. Для производства кабельной продукции применяются виды меди, характеризующиеся высокой чистотой. Если в ее состав добавить даже незначительное количество посторонних металлических примесей, к примеру, всего 0,02% алюминия, то электрическая проводимость исходного металла уменьшится на 8–10%.

Невысокий и ее высокая прочность, а также способность поддаваться различным видам механической обработки - это те свойства, которые позволяют производить из нее трубы, успешно использующиеся для транспортировки газа, горячей и холодной воды, пара. Совершенно не случайно именно подобные трубы применяются в составе инженерных коммуникаций жилых и административных зданий в большинстве европейских стран.

Медь, кроме исключительно высокой электропроводности, отличается способностью хорошо проводить тепло. Благодаря этому свойству она успешно используется в составе следующих систем.

Кристаллическая решетка меди - гранецентрированный куб. Полиморфных превращений она не имеет. Температура плавления 1083 °С. Прочность и пластичность меди сильно зависит от наклепа. После прокатки и отжига медь имеет предел прочности 200...250 МПа, а относительное удлинение 30...35 %.

Вследствие высокой пластичности медь плохо обрабатывается резанием, но легко деформируется в горячем и холодном состояниях. Прочность меди в результате холодной деформации возрастает до 700 МПа, а пластичность ее снижается до 1...3 %.

В зависимости от химического состава существуют следующие марки меди: М00 (99,99 % Си), МО (99,95 % Си), Ml (99,90 % Си), М2 (99,70 % Си), М3 (99,50 % Си), М4 (99,0 % Си). Чем больше цифра в марке меди, тем больше в ней примесей.

Все примеси, кроме бериллия, ухудшают электропроводность меди. Особенно сильно снижают ее элементы, образующие твердые растворы с ограниченной растворимостью и вызывающие сильное искажение кристаллической решетки - фосфор, кремний, железо и мышьяк. Элементы, обладающие полной растворимостью в меди и слабо искажающие ее решетку, в значительно меньшей степени снижают ее электропроводность. Например, серебро почти не влияет на электропроводность меди. Сплав, содержащий приблизительно 0,25 % серебра, применяют для изготовления обмоток сверхмощных турбогенераторов.

Примеси, не растворяющиеся в меди или образующие нерастворимые включения, почти не влияют на электропроводность меди (силикаты, сернистые и кислородные включения, свинец, висмут).

В установках глубокого охлаждения для присоединения манометров и других приборов применяют медные трубки. Малая механическая прочность меди не позволяет использовать медные трубы большого диаметра. Следует иметь в виду, что медь подвержена ползучести при комнатной температуре.

Из-за высокой теплопроводности и хорошей коррозионной стойкости во многих средах медь находит применение как материал для поверхностей нагрева трубчатых теплообменников.

Латуни - медные сплавы, в которых преобладающим легирующим компонентом является цинк. Кроме меди и цинка, латуни могут содержать небольшие примеси других элементов.

Латуни маркируют буквой Л, после буквы следует цифра, указывающая на содержание в ней меди (Л96, Л68 и др.). Если кроме меди и цинка латунь содержит примеси других элементов, то за буквой Л следует буква, принятая для условного обозначения примеси: О - олово, С - свинец, А - алюминий, Ж - железо, Мц - марганец, Н - никель, К - кремний, Ф - фосфор. Например: ЛАЖ60-1 -1 -латунь содержит 60 % меди, 1 % алюминия, 1 % железа, остальное цинк.

Латуни с большим содержанием меди называют томпаками - Л96 и Л80, а Л85 и Л80 - полутомпаками.

В теплотехнике латуни применяют для изготовления трубок конденсаторов паровых турбин и теплофикационных бойлеров. Для конденсаторов, работающих на пресной воде, применяют трубки из латуни Л68, а для теплофикационных бойлеров из Л68 и Л63. Латунные трубки предпочтительнее по сравнению с трубками из углеродистой стали вследствие более высокой коррозионной стойкости в воде.

В процессе эксплуатации наблюдается особый вид разрушения латунных трубок - обесцинкование. Отдельные участки трубы или вся ее поверхность превращаются в рыхлые кристаллы меди. Иногда этот процесс развивается в виде язвенных образований: «пробки» меди легко выпадают, и сплошность трубы нарушается. Нормальный срок службы латунных труб в бойлерах и конденсаторах 20 лет, однако при сплошном слоевом растворении цинка массовый выход из строя труб начинается через 4...6 лет. При образовании «пробок» выход труб из строя начинается через 1...2 года, а иногда даже через несколько месяцев. Латунь Л070-1 несколько лучше сопротивляется растворению цинка, чем латунь Л63, Поэтому трубки из латуни ЛО70-1 ставят на конденсаторы, охлаждаемые морской водой. Сильно ускоряют процесс обесцинкования угольная кислота и аммиак, растворенный в охлаждаемой воде.

Экономичнее устанавливать на охладителях, работающих на морской воде, более дорогие мельхиоровые трубки (МН70-30), срок службы которых составляет не менее 10 лет против 3 лет дешевых латунных трубок.

В табл. 8.1 приведены некоторые латуни и их механические свойства.

Латунные трубки в процессе изготовления получают наклеп, поэтому в материале трубок имеются остаточные напряжения. Хранение их на воздухе приводит к образованию трещин. Для предупреждения образования трещин трубки подвергают отжигу при 200...400 °С в течение нескольких часов.

Для деталей, изготавливаемых обработкой резанием, применяют латунь Л59 и латунь со свинцом ЛС59-1.

Таблица 8.1

Механические свойства некоторых латуней (после отжига)

Ряд латуней применяют преимущественно для изготовления литых деталей. Коррозионно-стойкие детали льют из алюминиевой латуни ЛА67-2,5, на арматурное литье идут латуни ЛК80-ЗЛ и ЛМцОС5 8-2-2-2.

Латунь деформируемая - латунь, содержащая 57...97 % Си, обладающая высокой пластичностью, легко обрабатывается давлением (табл. 8.2).

Таблица 8.2

Химический состав и применение деформируемых латуней*

(по ГОСТ 15527-70)

Окончание табл. 8.2

* В латуни марки Л70 должно быть не более 0,005 % А$; 0,005 % Бп и 0,002 % Б; в антимагнитных латунях содержание железа должно быть не более 0,03 %.

Латунь литейная предназначена для изготовления полуфабрикатов и фасонных деталей методом литья. Латунь литейная содержит 50...81 % Си. В качестве легирующих элементов применяются алюминий, марганец, железо, кремний, олово и свинец. Латуни литейные отличаются высокими литейными свойствами и коррозионной стойкостью. Большинство из них имеют хорошие антифрикционные свойства и в ряде случаев являются полноценными заменителями оловянистых бронз. По ГОСТ 17711-80 изготовляется 10 марок латуни литейной (табл. 8.3).

Из литейной латуни изготовляют коррозионно-стойкие литые детали морских судов (гребные винты, лопасти, арматуру и др.), самолетов, различных машин и аппаратов, всевозможных нажимных и червячных винтов, шестерен, подшипников и других антифрикционных деталей, работающих в тяжелых условиях.

Структура литейной латуни за исключением латуни Л62, однофазовая. Латунь Л62 в отожженном состоянии имеет двухфазную структуру - (а + Р)-кристаллы. При температуре выше 750 °С эта латунь состоит только из кристаллов р-фазы. ПрочТаблица 8.3

Химический состав и механические свойства литейных латуней (по ГОСТ 17711-80)

Механические

свойства

другие элементы

ст в, МПа (не менее)

ЛАЖМц66-6-3-2

ЛМцОС58-2-2-2

* Литье в кокиль. ** Литье в землю. *** Центробежное литье.

ность и твердость латуней возрастает с увеличением содержания цинка. Максимальной пластичностью обладает латунь Л68, применяемая главным образом для деталей, изготовляемых штамповкой или другими видами обработки с высокими степенями вытяжки. Наибольшее применение из стандартных деформируемых латуней имеет латунь Л62, содержащая минимальное количество меди и обладающая достаточно высокими механическими свойствами и коррозионной стойкостью. Деформируемые латуни, предназначаемые для изготовления деталей штамповкой, наряду с высокой пластичностью должны иметь определенный размер зерна. Крупнозернистая структура приводит к образованию на штампованных изделиях шероховатой поверхности. На деформируемых латунях с очень мелким зерном могут возникать трещины при глубокой вытяжке.

Из деформируемых латуней изготавливают листы, прутки, трубки и проволоку.

Латунь деформируемая марки Л96 стойкая против коррозионного растрескивания имеет высокую теплопроводность, применяется для изготовления трубок авиационных радиаторов и конденсаторных трубок.

Латунь Л90 обладает высокой коррозионной стойкостью, хорошо сваривается со сталью. Из нее изготовляют биметаллы типа сталь-латунь.

Латунь деформируемая коррозионно-стойкая - латунь, содержащая 60...91 % Си и один или несколько легирующих элементов.

Латунь деформируемая коррозионно-стойкая обладает более высокой коррозионной стойкостью, чем простые (двойные) латуни, и хорошо обрабатывается давлением. Добавки, улучшающие коррозионную стойкость латуней: алюминий, марганец, кремний, никель, олово и мышьяк.

Алюминий повышает коррозионную стойкость латуней в условиях морской и пресной воды. Добавки никеля и железа к алюминийсодержащим латуням повышают их коррозионную стойкость и прочность. Изготовляются следующие марки, содержащие алюминий: ЛА85-0,5, ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2. Предел прочности этих латуней в отожженном состоянии составляет 380-500 МПа и в наклепанном (на 50 %) - 580...700 МПа, относительное удлинение 40...55 и 8... 12 % соответственно. Латунь деформируемую коррозионно-стойкую с высоким содержанием меди марки ЛА85-0,5 применяют для изготовления знаков отличия, фурнитуры и художественных изделий; ЛА77-2 - для конденсаторных труб. Из латуни деформируемой коррозионно-стойкой ЛАЖ60-1-1 изготовляют трубы и прутки для высокопрочных деталей, работающих в морской воде. Латунь деформируемая коррозионно-стойкая ЛАН59-3-2 отличается высокой прочностью и коррозионной стойкостью и предназначается для коррозионно-стойких, высокопрочных деталей, применяемых в морском судостроении, электромашиностроении и химической апаратуре.

Марганец повышает стойкость латуней против действия морской воды, хлоридов и перегретого пара. В сочетании с алюминием и железом марганец также повышает прочность латуней. Механические свойства выпускаемых латуней деформируемых коррозионно-стойких с марганцем марок ЛЖМц59-1-1, ЛМц58-2 и ЛМцА57-3-1: предел прочности 45...600 МПа, относительное удлинение 40...60 %. Из латуней ЛЖМц59-1-1, ЛМц58-2 и ЛМцА57-3-1 изготовляют трубы, листы, полосы и прутки. Выпускают также нестандартную латунь ЛНМцЖА60-1-2-1-1 (58...62 % Си, 0,1...0,5 % №, 1,5...2,5 % Мп, 0,5...1,1 % Ре и 0,5... 1 % А1), характеризующуюся высокой коррозионной стойкостью в пресной и морской воде. Эта латунь заменяет бронзы и латуни с высоким содержанием меди и может изготовляться из вторичных медных сплавов; применяется для изготовления деталей в морском судостроении.

Кремний (кремнистая латунь) повышает коррозионную стойкость латуней в морской воде и атмосферных условиях, а также увеличивает стойкость против коррозионного растрескивания. Выпускается латунь с кремнием стандартная ЛК80-3 и нестандартная ЛКС65-1,3-3 (63,5...66,5 % Си, 1...2 % Бц 2,5...3,5 РЬ). Последняя хорошо обрабатывается резанием и обладает высокими антифрикционными свойствами. Из латуни ЛК80-3 изготовляют кованные и штампованные детали. Механические свойства латуни ЛК80-3: предел прочности 300...500 МПа, относительное удлинение 15...40 %.

Никель (никелевая латунь) повышает коррозионную стойкость латуней в атмосферных условиях и морской воде и несколько увеличивает стойкость против обесцинкования. Выпускается стандартная латунь ЛН65-5, отличающаяся высокой коррозионной стойкостью и повышенными механическими свойствами (предел прочности 380...700 МПа, относительное удлинение 4...60 %). Из латуни ЛН65-5 изготовляют листы, полосы, ленты, трубы, прутки и профили. Ее применяют для конденсаторных труб, манометрических трубок и сеток бумагоделательных машин.

Олово повышает коррозионную стойкость латуней в морской и пресной воде, вследствие чего они получили название морских латуней. По ГОСТ 17711-80 выпускают четыре марки латуни с оловом: ЛО90-1, ЛО70-1, Л062-1 и ЛО60-1. Механические свойства оловянистых латуней в зависимости от содержания олова: предел прочности в отожженном состоянии от 280 до 350 МПа, в нагартованном состоянии от 450 до 650 МПа, а относительное удлинение 40...60 % и 8... 12 % соответственно. Из латуни ЛО90-1 изготовляют полосы и ленты, применяемые для антифрикционных деталей, от которых требуется хорошая коррозионная стойкость. Латунь Л070-1 в основном предназначается для изготовления конденсаторных труб, теплотехнической аппаратуры и т.п. Латунь Л062-1 поставляется в виде листов, полос и прутков и предназначается для всевозможных деталей в морском судостроении. Латунь ЛО60-1 применяется в виде проволоки и тонких прутков для сварки различных конструкций в судостроении.

Мышьяк в количестве до 0,05 % в несколько раз повышает стойкость против обесцинкования латуней с высоким содержанием цинка (более 20 %).

Латунь заклепочная. К ней относится латунь Л 62, из которой изготавливают проволоку диаметром от 1 до 10 мм. Проволока выпускается в отожженном состоянии с а в не менее 380 МПа и относительным удлинением не менее 18 %. Во избежание коррозионного растрескивания клепанные детали необходимо подвергать низкотемпературному отжигу при 250...300 °С.

Бронзы. Бронзы - сплавы меди, в которых основным легирующим компонентом является любой металл, кроме цинка. Цинк также может входить в состав бронз, но в них он не является основным легирующим элементом. Большинство бронз обладают хорошими литейными свойствами и хорошо обрабатываются резанием.

Обозначение марок бронз начинаются буквами Бр. Далее следуют буквы, соответствующие легирующим элементам бронзы. Цифры указывают на содержание этих элементов в процентах. Например: БрСЗО содержит около 30 % свинца, а БрФ6,5-0,25 содержит 6,5 % олова и 0,25 % фосфора.

Из бронз изготавливают втулки подшипников скольжения и другие трущиеся детали (шестерни, направляющие и др.). Бронзы обеспечивают малый коэффициент трения в паре со сталью, хорошо прирабатываются (хорошо воспринимают очертания вала), выдерживают большие удельные давления и мало изнашиваются.

Материал вкладыша подшипника или другой трущейся детали, обладающий хорошими антифрикционными свойствами, должен состоять, по крайней мере, из двух структурных составляющих: твердой и мягкой. В процессе приработки вала к подшипнику мягкая составляющая вырабатывается, образуются микроканалы, по которым циркулирует смазка. Вал опирается на твердые включения вкладыша подшипника. Но твердые включения материала вкладыша должны быть мягче самой мягкой структурной составляющей вала. Иначе твердые включения материала вкладыша подшипника будут вызывать быстрый износ вала. Мягкая металлическая основа вкладыша хорошо поглощает случайно попавшие в подшипник твердые частицы.

Оловянистые бронзы склонны к ликвации: при ускоренном охлаждении они получают резко выраженное дендритное строение. Хорошие литейные свойства оловянистых бронз позволяют применять их для фасонного литья.

Обработке давлением можно подвергать только однофазные бронзы, содержащие не более 5...6 % 8п. Эти бронзы проходят рекристаллизационный отжиг (при 600...650 °С) - как промежуточную операцию при холодной обработке давлением или заключительную операцию для придания готовым полуфабрикатам требуемых свойств. Оловянистые бронзы, особенно двухфазные, обладают высокими антифрикционными свойствами.

Бронзы с большим содержанием дорогостоящего олова заменяют более дешевыми бронзами, в которые добавляют цинк и свинец. Кроме того, свинец улучшает обрабатываемость резанием.

В оловянистые бронзы добавляют также фосфор (до 1 %), который является раскислителем и улучшает их литейные свойства. Фосфор повышает механические и антифрикционные свойства.

Алюминиевые бронзы , содержащие до 6...8 % А1, обрабатывают давлением в холодном или горячем состоянии. Холодная деформация значительно повышает прочность.

Кремнистые бронзы превосходят оловянистые по механическим свойствам и в то же время являются более дешевыми. Они обладают высокой устойчивостью против коррозии в ряде агрессивных сред, особенно в щелочах. Однофазные кремнистые бронзы обладают высокой пластичностью.

Бериллиевые бронзы содержат 2...2,5 % Ве, обладают наилучшим комплексом свойств из всех известных бронз. Бериллиевая бронза значительно повышает механические свойства в результате термической обработки. Наиболее высокие механические свойства бериллиевые бронзы приобретают после закалки с

760...780 °С в воде и старении при 300...350 °С в течение 2 ч.

В закаленном состоянии бериллиевые бронзы имеют а в = = 500 МПа; 5 = 45 % и твердость НВ 120. При старении временное сопротивление разрыву возрастает до 1300... 1350 МПа, твердость до НВ 400, относительное удлинение снижается до 1,5 %, Из бериллиевых бронз изготавливают пружины в электроаппаратуре, мембраны, а также детали электронной техники.

Свинцовистые бронзы содержат до 30 % РЬ. Свинец и медь нерастворимы в твердом состоянии, поэтому микроструктура свинцовистых бронз состоит из кристаллов более твердой меди и мягкого свинца. Это обеспечивает хорошие антифрикционные свойства сплава, но механические свойства при заливке в кокиль невысокие. Свинцовистые бронзы применяют для изготовления вкладышей подшипников, работающих с большими скоростями и при повышенных давлениях.

В табл. 8.4 приведены механические свойства и назначение некоторых бронз.

Таблица 8.4

Механические свойства и назначение бронз

Окончание табл. 8.4

Состояние

материала

Назначение

БрОФ6,5-0,15

холодной

деформации

Листы и ленты, проволока для пружин

Токоведущие пружины, контакты (пружинящие) в электромашинах и аппаратах химической промышленности

холодной

деформации

Литье в землю

Фасонное литье

Прессованные прутки

Прутки, поковки

БрАЖ10-4-4Л

Литье в кокиль

Фасонное литье

БрАЖН 10-4-4

деформации и отжига

Прутки, трубы, поковки

холодной

деформации

После прокатки и отжига

Лента, проволока, прутки. Сварные резервуары в пищевой промышленности

холодной

деформации

Ответственные детали узлов трения, работающих при высоких скоростях, повышенных удельных давлениях и температурах. Пружинящие контакты, пружины, мембраны, сильфоны

После закалки и старения

  • 1150...

Цветной металл не содержит железа или включает его малую долю. Именно такое сырье используется лучшими мастерами кузнечного искусства для изготовления оригинальных декоративных и функциональных элементов. Работать с составами – настоящее искусство, которое требует специальных инструментов, знаний и опыта. Для производства кованых украшений для интерьера используется лом цветных металлов (сплавы латуни и бронзы, алюминий и медь, платина, серебро и золото). Ковка таких металлов затруднена, поскольку их составы отличаются высокой степенью проводимости. Прогревают и обрабатывают материал при помощи газа.

Особенности ковки бронзы

Бронза используется для изготовления высокохудожественных предметов, работать с ней могут опытные мастера с незаурядным вкусом. Используется для работы металл с примесями кремния. Сплав из железа, алюминия и меди используется еще и для горячего проката, литья. При разогреве состав поменяет цвет с желтого на оранжевый, поэтому важно не перегреть его. Кузнец, зная особенности сплава, доведет массу до нужной температуры и только после этого начнет ее обработку.

Готовый металл достаточно жесткий, работать с ним непросто (он практически не гнется и не выпрямляется). А вот края кованого изделия остаются прочными и крепкими, поэтому из них можно делать тонкие спирали и завитки, которые будут ровными и гладкими.

Особенности ковки меди

С медью работать очень легко, поскольку металл имеет широкий диапазон рабочих температур. Используя для работы лом и отходы цветных металлов, мастер может изготовить большие детали. Медь – металл податливый, поэтому годится для штамповки и изгибов. Предварительно подвергать его отжигу не нужно, поскольку он не имеет наклепа.

Прогревать медь следует до красного цвета. Даже при использовании большого куска не потребуется дополнительный нагрев. Для сварки отдельных элементов во время ковки используется смесь газов.

Особенности ковки алюминия

Прочный и крепкий, легкий и надежный материал используется в разных отраслях промышленности. Пользуется популярностью сплав в авиационной и космической отрасли. Алюминий позволяет получить легкие и крепкие элементы для деталей самолетов и космических кораблей, станций, спутников. Используется состав и при производстве кованых изделий.

Нагрев выполняется в специальных закрытых печах, работающих на электричестве. Алюминий нагревается дольше, чем сталь. Перед работой с прогретым алюминием кузнец должен прогреть еще и свои инструменты (до 200–250 градусов). Чтобы упростить рабочий процесс, используется для работы лом металлов, небольшие слитки или заготовки прямоугольной формы.

Алюминий прилипает к штампу, поэтому перед работой с ним следует тщательно отполировать поверхность.

Особенности ковки латуни

Металл используется для изготовления разных тонкостенных элементов, декора. Латунь прочна и не подвержена коррозии, но изделия из нее негибкие. Для изготовления кованых изделий используются различные марки металла. Часто применяется состав с высоким содержанием меди, в этом случае мастера смогут получить податливый и гибкий материал. В кузнечном деле применяются специальные марки латуни с добавлением различных легирующих компонентов.

Особенности ковки серебра

Издревле серебро использовалось кузнецами для изготовления изысканных кованых предметов обихода. В умелых руках серебро становится декоративным украшением. Для работы с металлом применяются специальные инструменты. Перед обработкой его сильно разогревают. Часто из серебра кузнецы изготавливают небольшие слитки и бруски, фольгу и тонкостенные элементы.

Медь - металл розово-красного цвета, относится к группе тяжелых металлов, является отличным проводником тепла и электрического тока. Электропроводность меди в 1,7 раза выше, чем у алюминия, и в 6 раз выше, чем у железа.

Медь. Она имеет характерный красноватый цвет, в природе встречается в виде сернистых соединений, в окислах и очень редко в чистом виде. Медь маркируют буквой М. В зависимости от чистоты меди (ГОСТ 859-2001). Самая чистая медь - содержит 99,99% меди и 0,01% примесей. Благодаря высокой пластичности медь хорошо обрабатывается давлением в холодном и горячем состоянии. Она обладает хорошей электропроводностью. Из нее изготовляют проводники электрического тока - провода и кабели.

Химические свойства меди

Медь - малоактивный металл, который не взаимодействует с водой, растворами щелочей, соляной и разбавленной серной кислотой. Однако, медь растворяется в сильных окислителях (например, азотной и концентрированной серной).

Медь обладает достаточно высокой стойкостью к коррозии. Однако, во влажной атмосфере, содержащей углекислый газ, поверхность металла покрывается зеленоватым налетом (патиной).

Основные физические свойства меди

Механические свойства меди

При отрицательных температурах медь имеет более высокие прочностные свойства и более высокую пластичность, чем при температуре 20°С. Признаков холодноломкости техническая медь не имеет. С понижением температуры увеличивается предел текучести меди и резко возрастает сопротивление пластической деформации.

Применение меди

Такие свойства меди, как электропроводность и теплопроводность, обусло- вили основную область применения меди - электротехническая промыш- ленность, в частности, для изготовления проводов, электродов и т. д. Для этой цели применяется чистый металл (99,98-99,999%), прошедший электролитическое рафинирование.

Медь обладает многочисленными уникальными свойствами: устойчивостью к коррозии, хорошей технологичностью, достаточно долгим сроком службы, прекрасно сочетается с деревом, природным камнем, кирпичом и стеклом. Благодаря своим уникальным свойствам, с древнейших времен этот металл используется в строительстве: для кровли, украшения фасадов зданий и т. д. Срок службы медных строительных конструкций исчисляется сотнями лет. Кроме этого, из меди изготовлены детали химической аппаратуры и инструмент для работы с взрывоопасными или легковоспламеняющимися веществами.

Очень важная область применения меди - производство сплавов. Один из самых полезных и наиболее употребляемых сплавов - латунь (или желтая медь). Ее главные составные части: медь и цинк. Добавки других элементов позволяют получать латуни с самыми разнообразными свойствами. Латунь тверже меди, она ковкая и вязкая, потому легко прокатывается в тонкие листы или выштамповывается в самые разнообразные формы. Одна беда: она со временем чернеет.

С древнейших времен известна бронза. Интересно, что бронза более легкоплавка по сравнению с медью, но по своей твердости превосходит отдельно взятые чистые медь и олово. Если еще 30-40 лет назад бронзой называли только сплавы меди с оловом, то сегодня уже известны алюминиевые, свинцовые, кремниевые, марганцевые, бериллиевые, кадмиевые, хромовые, циркониевые бронзы.

Медные сплавы, так же как и чистая медь, с давних пор используются для производства различных орудий, посуды, применяются в архитектуре и искусстве.

Медные чеканки и бронзовые статуи украшали жилище людей с древних времен. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Большими мастерами в области бронзового литья были японцы. Гигантская фигура Будды в храме Тодайдзи, созданная в VIII веке, весит более 400 тонн. Чтобы отлить такую статую, требовалось поистине выдающееся мастерство.

    Алюминий, свойства, применение.

Алюминий. Алюминий - мягкий металл белого цвета. Он добывается путем электролиза из алюминиевой руды - бокситов и хорошо поддается прокатке и ковке. Особенностями алюминия являются легкость, хорошая электропроводность (60% электропроводности меди) и высокая коррозийная стойкость.

По ГОСТ 3549-55 алюминий выпускается нескольких марок. Самой высокой по чистоте является марка АВ0000, содержащая 99,996% алюминия. Из алюминия изготовляют провода, кабели, змеевики (испарители) в холодильниках и т. д. Окислы алюминия безвредны.

Алюминий характеризуется высокой электро- и теплопроводностью, коррозионной стойкостью, пластичностью, морозостойкостью. Важнейшим свойством алюминия является его малая плотность (примерно 2.70 г/куб.см). Температура плавления алюминия около 660 С.

Физико-химические, механические и технологические свойства алюминия очень сильно зависят от вида и количества примесей, ухудшая большинство свойств чистого металла. Основными естественными примесями в алюминии являются железо и кремний. Железо, например, присутствуя в виде самостоятельной фазы Fe-Al, снижает электропроводность и коррозионную стойкость, ухудшает пластичность, но несколько повышает прочность алюминия.

В зависимости от степени очистки первичный алюминий разделяют на алюминий высокой и технической чистоты (ГОСТ 11069-2001). К техническому алюминию относятся также марки с маркировкой АД, АД1, АД0, АД00 (ГОСТ 4784-97). Технический алюминий всех марок получают электролизом криолит-глиноземных расплавов. Алюминий высокой чистоты получают дополнительной очисткой технического алюминия. Особенности свойств алюминия высокой и особой чистоты рассмотрены в книгах

лектропроводность .

Важнейшее свойство алюминия – высокая электропроводность, по которой он уступает только серебру, меди и золоту. Сочетание высокой электропроводности с малой плотностью позволяет алюминию конкурировать с медью в сфере кабельно-проводниковой продукции.

На электропроводность алюминия кроме железа и кремния сильно влияет хром, марганец, титан. Поэтому в алюминии, предназначенном для изготовления проводников тока, регламентируется содержание ещё нескольких примесей. Так, в алюминии марки А5Е при допускаемом содержании железа 0.35%, а кремния 0.12%, сумма примесей Cr+V+Ti+Mn не должна превышать всего лишь 0.01%.

Электропроводность зависит от состояния материала. Длительный отжиг при 350 С улучшает проводимость, а нагартовка проводимость ухудшает.

Величина удельного электрического сопротивления при температуре 20 С составляет Ом*мм 2 /м или мкОм*м:

0.0277 – отожженная проволока из алюминия марки А7Е

0.0280 – отожженная проволока из алюминия марки А5Е

0.0290 – после прессования, без термообработки из алюминия марки АД0

Таким образом удельное электросопротивление проводников из алюминия примерно в 1.5 раза выше электросопротивления медных проводников. Соответственно электропроводность (величина обратная удельному сопротивлению) алюминия составляет 60-65% от электропроводности меди. Электропроводность алюминия растет с уменьшением количества примесей.

Температурный коэффициент электросопротивления алюминия (0.004) приблизительно такой же, как у меди.

Теплопроводность

Теплопроводность алюминия при 20 С составляет примерно 0.50 кал/см*с*С и возрастает с увеличением чистоты металла. По теплопроводности алюминий уступает только серебру и меди (примерно 0.90), втрое превышая теплопроводность малоуглеродистой стали. Это свойство определяет применение алюминия в радиаторах охлаждения и теплообменниках.

Другие физические свойства .

Алюминий имеет очень высокую удельную теплоемкость (примерно 0.22 кал/г*С). Это значительно больше, чем для большинства металлов (у меди – 0.09). Удельная теплота плавления также очень высока (примерно 93 кал/г). Для сравнения – у меди и железа эта величина составляет примерно 41-49 кал/г.

Отражательная способность алюминия сильно зависит от его чистоты. Для алюминиевой фольги чистотой 99.2% коэфициент отражения белого света равен 75%, а для фольги с содержанием алюминия 99.5% отражаемость составляет уже 84%.

Коррозионные свойства алюминия.

Сам по себе алюминий является очень химически активным металлом. С этим связано его применение в алюмотермии и в производстве ВВ. Однако на воздухе алюминий покрывается тонкой (около микрона), пленкой окиси алюминия. Обладая высокой прочностью и химической инертностью, она защищает алюминий от дальнейшего окисления и определяет его высокие антикоррозионные свойства во многих средах.

ехнологические свойства .

Высокая пластичность алюминия позволяет производить фольгу (толщиной до 0.004 мм), изделия глубокой вытяжкой, использовать его для заклепок.

Алюминий технической чистоты при высоких температурах проявляет хрупкость.

Обрабатываемость резанием очень низкая.

Температура рекристаллизационного отжига 350-400 С, температура отпуска – 150 С.

Свариваемость.

Трудности сварки алюминия обусловлены 1) наличием прочной инертной окисной пленки, 2) высокой теплопроводности.

Тем не менее алюминий считается хорошо свариваемым металлом. Сварной шов имеет прочность основного металла (в отожженном состоянии) и такие же коррозионные свойства. Подробно о сварке алюминия см., например, www . weldingsite.com.ua .

Применение.

Из-за низкой прочности алюминий применяется только для ненагруженных элементов конструкций, когда важна высокая электро- или теплопроводность, коррозионная стойкость, пластичность или свариваемость. Соединение деталей осуществляется сваркой или заклепками. Технический алюминий применяется как для литья, так и для производства проката.

    Сплавы на основе меди, марки, применение.

В настоящее время считается, что бронзовому веку предшествовал период, когда оружие и инструменты человек делал из меди. В то же время из употребления не исчезли еще кремниевые орудия, поэтому его называют каменно-медным веком.

Трудно установить точно, когда именно люди начали добывать и обрабатывать металлы. Можно лишь предположить, какие из металлов первыми нашли применение. Очевидно, это были металлы, которые в природе встречаются в виде самородков. К таким наиболее распространенным металлам относятся медь и золото. Скорее всего, золото и было первым металлом, который люди начали использовать. Однако из-за низких механических свойств изготовлять орудия труда или оружие было нецелесообразно. Поэтому, очевидно, первые мелкие изделия, такие как наконечники для стрел и копий, выковывали из найденных самородков меди. Было обнаружено, что при холодной ковке медь не только принимает нужную форму, но и становится тверже. Затем люди открыли, что упрочненный ковкой металл можно снова сделать мягким, нагрев его на огне. В дальнейшем люди научились плавить медь и отливать ее в определенные формы.

Однако медь при всех своих достоинствах имела существенный недостаток – медные орудия труда и инструменты быстро затуплялись. Даже в холодноупрочненном состоянии свойства меди были не настолько высоки, чтобы заменить изделия из камня.

Решающую роль в этом направлении сыграли сплавы меди с другими элементами (бронзы). Основными преимуществами сплавов по сравнению с медью были их лучшие литейные свойства, значительно более высокие твердость и прочность, более сильное упрочнение при холодной деформации.

Наиболее распространенными леги­ру­ющими элементами в меди являются цинк, алюминий, олово, железо, кремний, мар­га­нец, бериллий, никель, которые существен­но повышают ее прочностные свойства. На рис. 66 показано влияние некоторых ле­гирующих элементов на предел прочности меди s в, МПа. Легирующие элементы, по­вы­шая прочность, практически не снижают, а некоторые из них (алюминий, цинк, олово) даже повышают пластичность.

Медные сплавы, как и сплавы на основе алюминия, подразделяются на де­фор­ми­ру­емые и литейные, термически неупрочняемые. Однако наиболее часто медные спла­вы делят на латуни и бронзы (рис. 67).

Латунями называются сплавы на основе меди, в которых главным легирующим элементом является цинк. Бронзы – все сплавы меди (кроме латуней) с легирующими элементами.

Обозначение медных сплавов. Медные сплавы маркируются по химическому составу. Для этого используются буквы (табл. 12), обозначающие легирующие элементы и числа, показывающие количество элементов в массовых процентах (мас. %).