Решение арифметических задач. Простые текстовые арифметические задачи (их классификация, примеры и способы решения)

Обучение решению текстовых задач играет важную роль в формировании математических знаний. Текстовые задачи дают большой простор для развития мышления учащихся. Обучение решению задач – это не только обучение технике получения правильных ответов в некоторых типичных ситуациях, сколько обучение творческому подходу к поиску решения, накопление опыта мыслительной деятельности и демонстрация учащимися возможностей математики в решении разнообразных задач. Однако при решении текстовых задач в 5-6 классах чаще всего используется уравнение. Но мышление пятиклассников еще не готово к формальным процедурам, выполняемым при решении уравнений. Арифметический способ решения задач имеют ряд преимуществ по сравнению с алгебраическим потому, что результат каждого шага по действиям нагляднее и конкретнее, не выходит за рамки опыта пятиклассников. Школьники лучше и быстрее решают задачи по действиям, чем с помощью уравнений. Детское мышление конкретно, и развивать его надо на конкретных предметах и величинах, затем постепенно переходить к оперированию абстрактными образами.

Работа над задачей предусматривает внимательное прочтение текста условия, вникания в смысл каждого слова. Приведу примеры задач, которые легко и просто можно решить арифметическим способом.

Задача 1. Для приготовления варенья на две части малины берут три части сахара. Сколько килограммов сахара нужно взять на 2 кг 600 г малины?

При решении задачи на “части” надо приучить наглядно представлять условие задачи, т.е. лучше опираться на рисунок.

  1. 2600:2=1300 (г) - приходится на одну часть варенья;
  2. 1300*3= 3900 (г) - сахара нужно взять.

Задача 2. На первой полке стояло в 3 раза больше книг, чем на второй. На двух полках вместе стояло 120 книг. Сколько книг стояло на каждой полке?

1) 1+3=4 (части) - приходится на все книги;

2) 120:4=30 (книг) - приходится на одну часть (книги на второй полке);

3) 30*3=90 (книг)- стояло на первой полке.

Задача 3. В клетке сидят фазаны и кролики. Всего в ней 27 голов и 74 ноги. Узнать число фазанов и число кроликов в клетке.

Представим, что на крышку клетки, в которой сидят фазаны и кролики, мы положили морковку. Тогда все кролики встанут на задние лапки, чтобы дотянуться до нее. Тогда:

  1. 27*2=54 (ноги) - будут стоять на полу;
  2. 74-54=20 (ног) - будут наверху;
  3. 20:2=10 (кроликов);
  4. 27-10=17 (фазанов).

Задача 4. В нашем классе 30 учащихся. На экскурсию в музей ходили 23 человека, а в кино – 21, а 5 человек не ходили ни на экскурсию, ни в кино. Сколько человек ходили и на экскурсию, и в кино?

Для анализа условия и выбора плана решения можно использовать “круги Эйлера”.

  1. 30-5=25 (человек) – ходили или в кино, или на экскурсию,
  2. 25-23=2 (человек) – ходили только в кино;
  3. 21-2=19 (человек) – ходили и в кино, и на экскурсию.

Задача 5. Три утенка и четыре гусенка весят 2 кг 500 г, а четыре утенка и три гусенка весят 2кг 400г. Сколько весит один гусенок?

  1. 2500+2400=2900 (г) – весят семь утят и семь гусят;
  2. 4900:7=700 (г) – вес одного утенка и одного гусенка;
  3. 700*3=2100 (г) – вес 3 утят и 3 гусят;
  4. 2500-2100=400 (г) – вес гусенка.

Задача 6. Для детского сада купили 20 пирамид: больших и маленьких – по 7 и по 5 колец. У всех пирамид 128 колец. Сколько было больших пирамид?

Представим, что со всех больших пирамид мы сняли по два кольца. Тогда:

1) 20*5=100 (колец) – осталось;

2) 128-100-28 (колец) – мы сняли;

3) 28:2=14 (больших пирамид).

Задача 7. Арбуз массой 20кг содержал 99% воды. Когда он немного усох, содержание воды в нем уменьшилось до 98%. Определите массу арбуза.

Для удобства решение будет сопровождаться иллюстрацией прямоугольников.

99% вода 1% сухое вещество
98% вода 2% сухое вещество

При этом желательно рисовать прямоугольники “сухого вещества” равными, потому что масса “сухого вещества” в арбузе остается неизменной.

1) 20:100=0,2 (кг) – масса “сухого вещества”;

2) 0,2:2=0,1 (кг) – приходится на 1% усохшего арбуза;

3) 0,1*100=10 (кг) – масса арбуза.

Задача 8. Гости спросили: сколько лет исполнилось каждой из трех сестер? Вера ответила, что ей и Наде вместе 28 лет, Наде и Любе вместе 23 года, а всем троим 38 лет. Сколько лет каждой из сестер?

  1. 38-28=10 (лет) – Любе;
  2. 23-10=13 (лет) – Наде;
  3. 28-13=15 (лет) – Вере.

Арифметический способ решения текстовых задач учит ребенка действовать осознанно, логически правильно, потому что при решении таким способом усиливается внимание к вопросу “почему” и имеется большой развивающий потенциал. Это способствует развитию учащихся, формированию у них интереса к решению задач и к самой науке математике.

Чтобы сделать обучение посильным, увлекательным и поучительным, надо очень внимательно отнестись к выбору текстовых задач, рассматривать различные способы их решения, выбирая оптимальные из них, развивать логическое мышление, что в дальнейшем необходимо при решении геометрических задач.

Научиться решать задачи школьники смогут, лишь решая их. “Если вы хотите научиться плавать, то смело входите в воду, а, если хотите научиться решать задачи, то решайте их”,- пишет Д.Пойа в книге “ Математическое открытие”.

Решить математическую задачу - это значит найти такую последовательность общих положений математики, применяя которые к условиям задачи получаем то, что требуется найти - ответ.


Основными методами решения текстовых задач являются арифметический и алгебраический метод, а так же комбинированный.


Решить задачу арифметическим методом - значит найти ответ на требование задачи посредством выполнения арифметических действий над данными в задаче числами. Одну и туже задачу можно решить различными арифметическими способами. Они отличаются друг от друга логикой рассуждений в процессе решения задачи.


Решить задачу алгебраическим методом - значит найти ответ на требование задачи путем составления и решения уравнения или системы уравнений.


Алгебраическим методом решают по следующей схеме:


1) выделяют величины, о которых идет речь в тексте задачи, и устанавливают зависимость между ними;


2) вводят переменные (обозначают буквами неизвестные величины);


3) с помощью введенных переменных и данных задачи составляют уравнение или систему уравнений;


4) решают полученное уравнение или систему;


5) проверяют найденные значения по условию задачи и записывают ответ.


Комбинированный метод решения включает как арифметический, так и алгебраический способы решения.


В начальной школе задачи делят по количеству действий при решении на простые и составные. Задачи, в которых для ответа на вопрос нужно выполнить только одно действие, называют простыми. Если для ответа на вопрос задачи нужно выполнить два и более действий, то такие задачи называют составными.


Составную задачу, тек же как и простую, можно решить, используя различные способы.


Задача. Рыбак поймал 10 рыб. Из них 3 леща, 4 окуня, остальные - щуки. Сколько щук поймал рыбак?


Практический способ .


Обозначим каждую рыбу кругом. Нарисуем 10 кругов и обозначим пойманных рыб.


Л Л Л О О О О


Для ответа на вопрос задачи можно не выполнять арифметические действия, так как количество пойманных щук соответствует не обозначенным кругам - их три.


Арифметический способ.


1) 3+4=7(р) - пойманные рыбы;


2) 10 - 7 = 3(р) - пойманные щуки.


Алгебраический способ.


Пусть х - пойманные щуки. Тогда количество всех рыб можно записать выражением: 3 + 4 + х. По условию задачи известно, что рыбак поймал всего 10 рыб. Значит: 3 + 4 + х = 10. Решив это уравнение, получим х = 3 и тем самым ответим на вопрос задачи.


Графический способ .


лещи окуни щуки



Этот способ, так же как и практический, позволят ответить на вопрос задачи, не выполняя арифметических действий.


В математике общепринято следующее деление процесса решения задач :


1) анализ текста задачи, схематическая запись задачи, исследование задачи;


2) поиск способа решения задачи и составление плана решения;


3) осуществление найденного плана;


4) анализ найденного решения задачи, проверка.


Методы поиска решения задачи можно назвать следующие:


1) Анализ: а) когда в рассуждениях двигаются от искомых к данным задачи; б) когда целое расчленяют на части;


2) Синтез: а) когда двигаются от данных задачи к искомым;
б) когда элементы объединяют в целое;


3) Переформулировка задачи (четко формулировать промежуточные задания, возникающие по ходу поиска решения);


4) Индуктивный метод решения задачи: на основе точного чертежа усмотреть свойства фигуры, сделать выводы и доказать их;


5) Применение аналогии (вспомнить аналогичную задачу);


6) Прогнозирование - предвидение тех результатов, к которым может привести поиск.


Рассмотрим более подробно процесс решения задачи :


Задача на движение. Лодка прошла по течению реки расстояние между двумя пристанями за 6 ч, а обратно - за 8ч. За сколько времени пройдет расстояние между пристанями плот, пущенный по течению реки?


Анализ задачи. В задаче речь идет о двух объектах: лодка и плот. Лодка имеет собственную скорость, а плот и река, по которой плывут лодка и плот, имеет определенную скорость течения. Именно поэтому лодка совершает путь по течению реки за меньшее время (6ч) , чем против течения (8ч). Но эти скорости в задаче не даны, так же как неизвестно и расстояние между пристанями. Однако требуется найти не эти неизвестные, а время, за которое плот проплывет это расстояние.


Схематическая запись:


Лодка 6 ч



плот лодка


8


Поиск способа решения задачи. Нужно найти время, за которое плот проплывет расстояние между пристанями А и В. Для того, чтобы найти это время, надо знать расстояние АВ и скорость течения реки. Оба они неизвестны, поэтому обозначим расстояние АВ буквой S (км), а скорость течения а км/ч. Чтобы связать эти неизвестные с данными задачи, нужно знать собственную скорость лодки. Она тоже неизвестна, положим, она равна V км/ч. Отсюда возникает план решения, заключающийся в том, чтобы составить систему уравнений относительно введенных неизвестных.


Осуществление решения задачи. Пусть расстояние равно S (км), скорость течения реки а км/ч, собственная скорость лодки V км/ч , а искомое время движения плота равно х ч.


Тогда скорость лодки по течению реки равна (V+а) км/ч. За лодка, идя с этой скоростью, прошла расстояние в S (км). Следовательно, 6(V + а ) = S (1). Против течения эта лодка идет со скоростью (V - а ) км/ч и данный путь она проходит за 8 ч , поэтому 8(V - а ) = S (2). Плот, плывя со скоростью течения реки а км/ч, проплыл расстояние S (км) за х ч, следовательно, ах = S (3).


Полученные уравнения образуют систему уравнений относительно неизвестных а, х, S, V. Так как требуется найти лишь х , то остальные неизвестные постараемся исключить.


Для этого из уравнений (1) и (2) найдем: V + а = , V - а = . Вычитая из первого уравнения второе, получим: 2а = - . Отсюда а = . Подставим найденное выражение в уравнение (3): х = . Откуда х= 48 .


Проверка решения. Мы нашли, что плот проплывет расстояние между пристанями за 48 ч. Следовательно, его скорость, равная скорости течения реки, равна . Скорость же лодки по течению реки равна км/ч, а против течения км/ч. Для того, чтобы убедиться в правильности решения, достаточно проверить, будут ли равны собственные скорости лодки, найденные двумя способами: + и
- . Произведя вычисления, получим верное равенство: = . Значит, задача решена правильно.


Ответ: плот проплывет расстояние между пристанями за 48 часов.


Анализ решения . Мы свели решение этой задачи к решению системы трех уравнений с четырьмя неизвестными. Однако найти надо было одно неизвестное. Поэтому возникает мысль, что данное решение не самое удачное, хотя и простое. Можно предложить другое решение.


Зная, что лодка проплыла расстояние АВ по течению реки за 6ч, а против - за 8ч, найдем, что в 1ч лодка, идя по течению реки проходит часть этого расстояния, а против течения . Тогда разность между ними - = есть удвоенная часть расстояния АВ, проплываемая плотом за 1ч. Значит. Плот за 1ч проплывет часть расстояния АВ, следовательно, все расстояние АВ он проплывет за 48 ч.


При таком решении нам не понадобилось составлять систему уравнений. Однако это решение сложнее приведенного выше (не всякий догадается найти разность скоростей лодки по течению и против течения реки).


Упражнения для самостоятельной работы


1. Турист, проплыв по течению реки на плоту 12 км, обратно возвратился на лодке, скорость которой в стоячей воде равна 5 км/ч, затратив на все путешествие 10 ч. Найдите скорость течения реки.


2. Одна мастерская должна сшить 810 костюмов, другая за этот же срок - 900 костюмов. Первая закончила выполнение заказов за 3 дня, а вторая за 6 дней до срока. Сколько костюмов в день шила каждая мастерская, если вторая шила в день на 4 костюма больше первой?


3. Два поезда выехали навстречу друг другу с двух станций, расстояние между которыми равно 400 км. Через 4 часа расстояние между ними сократилось до 40 км. Если бы один из поездов вышел на 1 час раньше другого, то их встреча произошла бы на середине пути. Определите скорости поездов.


4. На одном складе 500 т угля, а на другом - 600 т. Первый склад ежедневно отпускает 9 т, а второй - 11 т угля. Через сколько дней угля на складах станет поровну?


5. Вкладчик взял из сбербанка 25 % своих денег, а потом 64 000рублей. После чего осталось на счету 35 % всех денег. Какой был вклад?


6. Произведение двузначного числа и его суммы цифр равно 144. Найдите это число, если в нем вторая цифра больше первой на 2.


7. Решите следующие задачи арифметическим методом:


а) На путь по течению реки моторная лодка затратила 6 ч, а на обратный путь - 10 ч. Скорость лодки в стоячей воде 16 км/ч. Какова скорость течения реки?


в) Длина прямоугольного поля 1536 м, а ширина 625 м. Один тракторист может вспахать это поле за 16 дней, а другой за 12 дней. Какую площадь вспашут оба тракториста, работая в течении 5 дней?

Департамент образования

Государственное учреждение Ярославской области

«Центр оценки и контроля качества образования»

«Арифметические способы

решения текстовых задач

по математике в 5-6 классах»

Методическая разработка

Ореховой Елены Юрьевны,

учителя математики

МОУ Крюковской ООШ

Мышкинского МО

Ярославской области.

Научный руководитель:

кандидат педагогических наук,

Ярославль, 2006

ВВЕДЕНИЕ………………………………………………………………….

ГЛАВА І Текстовые задачи и их типология…………………………… ..

1.1. Определение текстовой задачи………………………………………..

1.2 Роль текстовых задач в школьном курсе математики……………….

1.3. Различные подходы к классификации текстовых задач…………….

1.4. Этапы решения текстовых задач……………………………………...

ГЛАВА ІІ Методика обучения учащихся решению текстовых задач арифметическим методом…………………………………………………..

2.1. Знания, умения учащихся по решению текстовых задач по

окончании начальной школы…………………………………………..

2.2. Планирование работы учителя по обучению учащихся решению

текстовых задач арифметическим способом…………………………

2.3. Организация работы учителя на каждом этапе решения задачи…….

2.3.1 Организация работы учителя над условием задачи……………..

2.3.2. Организация работы учителя по составлению плана решения…

2.3.3. Реализация плана решения……………………………………….

2.3.4. Анализ найденного решения и работа по поиску других

вариантов решения………………………………………………………….

2.4. Формирование приёмов решения задач «на процессы»……………..

2.4.1. Формирование понятия о времени протекания процесса………

2.4.2 Формирование понятий о скорости протекания процесса

и его продукте (результате)………………………………………

2.4.3. Формирование понятия совместного действия………………….

2.5. Составление задач учащимися…………………………………………

ЗАКЛЮЧЕНИЕ………………………………………………………………

СПИСОК ЛИТЕРАТУРЫ …………………………………………………..

ПРИЛОЖЕНИЕ ……………………………………………………………..

Введение.

В последние годы большие затруднения у детей на уроках математики вызывает задание: решите задачу. Почему так происходит? Зачем надо обучать детей решению текстовых задач и как это делать? – вот вопросы, которые я затронула в этой работе.

В традиционном российском школьном обучении математике текстовые задачи занимали особое место. Исторически долгое время математические знания передавались из поколения в поколение в виде списка задач практического содержания с их решениями. Обученным считался тот, кто умел решать задачи определённых типов, встречавшихся на практике.

Со временем работа с задачами совершенствовалась, она была выстроена в систему, оказывающую определённое воздействие на развитие мышления и речи учащихся, развивающую их смекалку и сообразительность, показывающую связь изучаемого с практикой.

С помощью задач формируются важные общеучебные умения, связанные с анализом текста, выделением условий задачи и главного вопроса, составлением плана решения, поиском условий, из которых можно получить ответ на главный вопрос, проверкой полученного результата. Использование арифметических способов решения задач способствовало общему развитию учащихся, развитию не только логического, но и образного мышления, лучшему усвоению естественного языка, а это повышало эффективность обучения математике и других дисциплин.

Пересматривая роль и место арифметики в системе школьных предметов, стремясь повысить научность изложения математики за счёт более раннего введения уравнений и функций, методисты-математики посчитали, что на обучение арифметическим способам решения задач тратится слишком много времени. Но арифметические способы решения текстовых задач как раз и готовят ребёнка к овладению алгеброй. А когда это произойдёт, то алгебра доставит ученику более простые, чем арифметические, способы решения некоторых задач.

«Наше традиционное отечественное преподавание математики имело более высокий уровень и базировалось на культуре арифметических задач. Ещё два десятка лет в семьях сохранялись старинные «купеческие» задачи. Теперь это утрачено. Алгебраизация последней реформы преподавания математики (конца 60-х годов) превращает школьников в автоматы. А именно арифметический подход демонстрирует содержательность математики, которой мы учим.», - писал академик.

Тем не менее, в методической литературе мало внимания уделяется арифметическим методам решения задач, поэтому целью моей работы является разработка методических материалов обучения учащихся 5-6 классов решению текстовых задач арифметическим способом.

Для достижения этой цели передо мной встали следующие задачи:

Ø изучить психолого-педагогическую литературу по данной проблеме;

Ø познакомиться с опытом работы учителей математики, использующих арифметический метод решения текстовых задач и проанализировать свой опыт работы в этом направлении;

Ø обосновать необходимость обучения учащихся решению текстовых задач в 5-6 классах;

Ø показать преимущество арифметических способов решения текстовых задач;

Ø разработать и представить методику обучения решению текстовых задач;

Ø представить анализ результатов обучения с использованием данного метода.

Методическая разработка состоит из введения, двух глав, заключения, приложения. Во введении обосновывается актуальность выбранной темы, определяется цель работы и ставятся задачи. В 1-й главе даётся определение текстовой задачи, различные подходы к классификации задач, показана роль текстовых задач в курсе математики, а также раскрываются этапы решения задач арифметическим методом. Во 2-й главе даются методические рекомендации по обучению решению текстовых задач арифметическим методом; представляется работа учителя на каждом этапе решения задачи, более подробно раскрывается организация работы учителя по обучению решению задач «на процессы».

ГЛАВА І.

ТЕКСТОВЫЕ ЗАДАЧИ И ИХ ТИПОЛОГИЯ.

1.1. Определение текстовой задачи.

Для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют. Что же такое задача?

С точки зрения любая задача представляет собой требование или вопрос, на который надо найти ответ, опираясь и учитывая те условия, которые указаны в задаче.

Задачи, в которых зависимость между условием и требованием сформулирована словами, называются текстовыми. При этом главным отличием задачи от примера является не только наличие текста, но и наличие части условия или требования, выраженного на естественном (нематематическом) языке. По определению задачи, в которых хотя бы один объект есть реальный предмет, называются практическими (житейскими, текстовыми, сюжетными).

Под текстовой задачей я понимаю такую задачу, в которой речь идёт о реальных объектах, процессах, связях и отношениях. Реальные процессы – это движение, работа, наполнение и освобождение бассейнов, покупки, смеси, сплавы и др. Такой терминологии придерживается, кандидат педагогических наук, автор учебников и учебно-методических пособий по математике

1.2 . Роль текстовых задач в школьном курсе математики.

Можно кратко определить значение текстовых задач в школьном курсе математики. Работа над задачей:

Развивает логическое мышление;

Помогает осмысливать и закреплять вычислительные навыки;

Имеет большое жизненно-практическое и воспитательное значение.

так определяет роль текстовых задач в курсе математики:

1. Текстовые задачи являются важным средством обучения математике. С их помощью учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики к решению практических задач.

2. Использование арифметических способов решения задач развивает смекалку и сообразительность, умение ставить вопросы, отвечать на них, то есть развивает естественный язык, готовит школьников к дальнейшему обучению.

3. Арифметические способы решения текстовых задач позволяют развивать умение анализировать задачные ситуации, строить план решения с учётом взаимосвязей между известными и неизвестными величинами (с учётом типа задачи), истолковывать результат каждого действия в рамках условия задачи, проверять правильность решения с помощью обратной задачи, то есть формулировать и развивать важные общеучебные умения.

4. Арифметические способы решения текстовых задач приучают детей к первым абстракциям , позволяют воспитывать логическую культуру, могут способствовать созданию благоприятного эмоционального фона обучения, развитию у школьников эстетического чувства применительно к решению задачи (красивое решение!) и изучению математики, вызывая интерес сначала к процессу поиска решения задачи, а потом к изучаемому предмету.

5. Обучение и воспитание ребёнка во многом напоминает этапы развития человечества, поэтому использование старинных задач и разнообразных арифметических способов их решения позволяет вести обучение математике в историческом контексте, что повышает мотивацию учения, развивает творческий потенциал.

Пока мы будем учить детей на русском языке – не только великом и могучем, но и достаточно трудном, пока мы хотим учить их сравнивать, выбирать наиболее простой путь достижения поставленной цели, пока мы не отказались от воспитания гибкости и критичности мышления, пока мы стараемся увязывать обучение математики с жизнью, нам будет трудно обойтись без текстовых задач – традиционного для отечественной методики средства обучения математике.

1.3. Различные подходы к классификации текстовых задач.

Существуют различные подходы к классификации текстовых задач. Можно говорить о типологии задач по методам решения: арифметический (по действиям или составлением выражения), алгебраический (составлением уравнения, системы уравнений или неравенств), геометрический (использование подобия, площадей фигур и т. п.). Но эта типология, как и любая другая, условна, так как одна и та же задача может быть решена и алгебраическим, и арифметическим методами.

К середине ХХ века в СССР сложилась развитая типология задач, включавшая: задачи на части, на нахождение двух чисел по их сумме и разности, по их отношению и сумме (разности), на дроби, на проценты, на совместную работу и др. Методика обучения решению задач была разработана достаточно хорошо, но её реализация на практике не была свободна от недостатков. Вот как описывал академик практику обучения решению задач, сложившуюся в нашей стране в то время: «Учеников – в том или ином порядке - знакомят с соответствующими «типами» задач, причём обучение решению задач сплошь и рядом сводится к рецептуре и «натаскиванию», к пассивному запоминанию учениками небольшого числа стандартных приёмов решения и узнаванию по тем или иным признакам, какой из них надо применить в том или ином случае… В итоге – полная беспомощность и неспособность ориентироваться в самых простых арифметических ситуациях, при решении чисто практических задач…» Но менять необходимо было не методику, а негодную практику её применения.

Анализируя содержание арифметических задач, связанных с различными процессами – работа, движение, расход энергии, наполнение и освобождение бассейнов и др. – можно увидеть в них ориентировку на три взаимосвязанные величины: скорость процесса, время его протекания и продукт (результат). Указанные величины составляют сущность всех названных задач.

В самом деле, сравним следующие задачи:

1) В одном колхозе для корма коров и лошадей заготовлено 2400 центнеров сена. На сколько дней хватит сена, если в день расходуется по 8 ц на коров и по 4 ц на лошадей?

2) Из двух городов, расстояние между которыми 760 км, одновременно отправляются навстречу друг другу два поезда, один со скоростью 50 км/ч, а другой со скоростью 45 км/ч. Через сколько часов они встретятся?

3) Двум слесарям, которые работают одновременно, дано задание изготовить 120 деталей. Через сколько времени это задание будет выполнено, если один слесарь изготовляет 7 деталей в час, а другой – 5 деталей в час?

4) Одновременно открыты три крана, каждый из них пропускает по 150 литров в час. Через сколько времени надо закрыть краны, если нужно набрать 1350 литров нефти?

Все 4 задачи различного предметного содержания, но имеют одинаковую математическую структуру. Во всех задачах требуется узнать время протекания какого-то процесса в ситуации совместного действия.

Таким образом, как писала в статье «Формирование общих приёмов решения арифметических задач»: «В основу типизации арифметических задач должны быть положены особенности отношений величин, представленных в условии задачи, а не сюжет.

Предварительный анализ показал, что задачи на «процессы» и задачи на «куплю-продажу» имеют идентичную систему отношений, что разница лишь в конкретно-предметном плане, что в данном случае не является существенным. Может быть найден способ анализа, позволяющий учащимся подходить к этим двум большим классам арифметических задач как к разновидностям одного и того же типа

С другой стороны, открывается возможность перенести рассмотренный приём в курс физики, где он успешно может быть применён не только при изучении движения, но и при определении давления, плотности, механической мощности и др.»

1.3 Этапы решения текстовых задач.

Под решением задачи будем понимать процесс, представляющий собой поиск необходимой последовательности действий на основе анализа условия и требования задачи, направленных на определение результата задачи; выполнение этих действий и получение результата, анализа и оценки последних.

В методике обучения математике выделены

4 основных этапа процесса решения задачи:

1) осмысление текста задачи и анализ её содержания;

2) осуществление поиска решения и составление плана решения;

3) реализация плана решения;

4) анализ найденного решения, поиск других способов решения.

При работе с текстовой задачей на первом этапе предполагается первоначальная работа с целью понимания сюжета, выявление величин, которыми описывается ситуация, установление различных зависимостей между этими величинами, определение отношений, заданных условием задачи. Результаты такого предварительного анализа часто бывает удобно зафиксировать в схематической записи. Обычно говорят: «Сделать краткую запись». Для различных видов задач краткие записи могут быть разными. Это можно сделать в виде таблицы, отрезочных или столбчатых диаграмм, схематического чертежа, рисунков и т. д. Такая запись служит схематизации материала, даёт возможность одновременно видеть все связи между данными.

Второй этап работы над задачей является самым трудным для учащихся. Его результатом должна являться математическая модель ситуации. Поиск способа решения может занимать по времени самое большое место в общем процессе решения. При этом довольно часто поиск способа решения приходится производить не один раз, когда в процессе выполнения найденного способа решения мы убеждаемся в его ошибочности или сложности. Очень важно каждый раз в случае неудачи поиска решения возвращаться к анализу условия задачи.

Составление плана решения производится двумя методами: аналитическим и синтетическим. Анализ способа решения удобно начинать с вопроса к задаче и производить его по схеме: чтобы узнать – надо знать… Такой метод является аналитическим. Иногда поиск решения осуществляется синтетическим путём. Исходя из данных условия составляют первую простую задачу. Полученный при её решении результат и одна из величин основной задачи позволяют составить новую простую задачу; так поступают до тех пор, пока ответ на последнюю простую задачу не будет ответом на вопрос основной задачи.

В процессе поиска решения обычно одновременно используют и анализ и синтез, то есть аналитико-синтетический метод . При этом ученик должен уметь:

1) переводить отношения между величинами на язык равенств;

2) записывать зависимости между величинами с помощью формул известных процессов и выражать величины из формул.

Таблица 1.

Основные отношения и их перевод на язык равенств.

При арифметическом способе решения необходимо умение учеником найти в задаче три взаимосвязанные величины и по двум известным из них найти неизвестную.

Так успешное решение задач на «процессы» предполагает понимание отношений между величинами: скорость процесса (v) , время его протекания (t) и продукт или результат работы (s).

s=v t v=s:t t=s:v

Причём важно разбираться в отношениях между этими величинами как в условиях одного участника процесса, так и в условиях нескольких участников.

Третий этап работы с задачей предполагает решение построенной математической модели, интерпретацию результата решения математической модели в заданную ситуацию. Объяснение решения задачи может иметь такие формы:

1. Составление всего плана перед решением задачи и затем производство действий к каждому пункту плана.

2. Краткий вопрос и следующее за ним действие.

3. Краткое пояснение полученных результатов действий.

4. Производство всех действий с последующим подробным устным объяснением всего решения задачи.

5. Постановка полных вопросов с последующим решением.

На практике чаще всего используются первые три вида объяснения.

На четвёртом этапе работы с задачей необходимо выполнить проверку результата решения, сравнить результат с условиями задачи, проверить его на достоверность. На этом этапе можно предложить другие варианты решения. Поиск наиболее рационального способа решения будят мысль ученика, развивают сообразительность и уводят его от шаблона, повышая в то же время интерес к работе.

Наконец, если ученик научится внимательно, вдумчиво анализировать задачу, вдумчиво решать каждую задачу, фиксируя в своей памяти все приёмы, с помощью которых были найдены решения, способы решения, то постепенно у него выработается умение решать любую задачу, пусть незнакомую. Известный математик, профессор Московского университета на вопрос «Что значит решить задачу?» дала короткий ответ: «Решить задачу – значит свести её к уже решённым.»

ГЛАВА ІІ

МЕТОДИКА ОБУЧЕНИЯ УЧАЩИХСЯ РЕШЕНИЮ

ТЕКСТОВЫХ ЗАДАЧ АРИФМЕТИЧЕСКИМ СПОСОБОМ.

2.1. Знания, умения, навыки учащихся по решению текстовых задач по окончании начальной школы.

К началу 5-го класса учащиеся должны знать связи между такими величинами, как цена, количество, стоимость; время, скорость, путь при равномерном движении; уметь применять к решению текстовых задач знание изученных зависимостей. Таковы основные требования к знаниям, умениям и навыкам обучающихся, обеспечивающие преемственную связь с курсом математики 5 класса , предъявляемые программой.

Основная цель обучения решению текстовых задач в начальной школе – осознанное усвоение детьми смысла арифметических действий , отношений «больше» - «меньше» (на несколько единиц и в несколько раз), «столько же» (или «равно»), взаимосвязи между компонентами и результатами действий, использованию действий вычитания (деления) для сравнения чисел.

Поэтому можно выделить следующие ключевые задачи, которые должны уметь решать выпускники начальной школы:

§ нахождение суммы величин, если эти величины известны с использованием сравнений «на…больше», «на…меньше», «в..раз больше», «в… раз меньше» в прямой и косвенной форме;

§ нахождение разницы между величинами с использованием действий вычитания и деления;

цена-количество-стоимость, норма расхода материала на 1 вещь-количество вещей-расход материала всего, скорость-время-расстояние;

§ нахождение одной из трёх величин в задачах на зависимости:

2.2. Планирование работы учителя по обучению решению текстовых задач арифметическим способом.

Несмотря на требования к знаниям, умениям учащихся, предъявляемые программой начальной школы, опыт моей работы показывает, что большинство учащихся начальной школы приходят в 5-й класс с небольшим багажом знаний и умений именно по решению текстовых задач. Поэтому основная цель моей работы на первых уроках математики в 5 классе во время повторения учебного материала – определить пробелы в знаниях и умениях учащихся, в том числе и по решению текстовых задач. Простейшие задачи в одно действие можно включить в тренировочные упражнения для устного счёта (см. приложение 1). При решении таких задач следует обращать внимание учащихся на те числовые данные, которые выражены не только числами, но и словами.

Иногда при анализе задач обнаруживается неумение некоторыми учащимися переводить на математический язык слова для сравнения величин. В таких случаях я пользуюсь таблицей, которую составляем вместе с учениками на первых уроках математики.

Таблица 2

Как было сказано выше, существуют различные подходы к определению типов задач. Несмотря на то, что любая классификация условна, обойтись без неё невозможно. В своей работе при планировании учебного материала и подготовке к урокам я выделяю некоторые так называемые ключевые задачи , приёмы решения которых должны освоить учащиеся 5 и 6 классов .

1. Задачи на процессы (на движение, на работу, на бассейны)

2. Задачи на нахождение двух или нескольких чисел по их сумме и разности; задачи на нахождение двух или нескольких чисел по их сумме (разности) и отношению.

3. Задачи на предположение.

4. Задачи на проценты.

5. Задачи на нахождение части от числа и числа по его части.

6. Задачи на пропорциональные зависимости.

Все эти задачи содержат новые приёмы решения. Поэтому требуется серьёзная подготовка к обучению.

В учебниках «Математика 5» и «Математика 6» автора, по которым я работаю, задачи разных видов «разбросаны», не систематизированы ни по сложности, ни по приёмам решения. Очевидно, для того, чтобы разрушить формирующиеся стереотипы решения, разнообразить способы деятельности учащихся. Но, на мой взгляд, при освоении нового приёма решения такого разнообразия лучше избегать и следовать «от простого к сложному». И только после того, как приём освоен и сформирован навык по его применению, его можно использовать и при решении составных задач разных видов.

Наиболее целенаправленно арифметический подход к решению текстовых задач раскрывается в учебниках «Арифметика 5», «Арифметика 6» и «Математика 5», «Математика 6» .

Поскольку я работаю по учебнику, который нацеливает учащихся на раннее введение уравнений и решение текстовых задач алгебраическим способом, то в тематическое планирование я внесла некоторые коррективы по использованию задачного материала (см. приложение 2).

2.3. Организация работы учителя на каждом этапе решения задачи.

Как было сказано выше, работа над задачей включает 4 основных этапа. Причём все четыре этапа одинаково важны. Поэтому рассмотрим работу учителя и учащихся на каждом отдельном этапе при решении задач разных видов.

2.3.1 Организация работы учителя над условием задачи.

На первом этапе необходимо добиться того, чтобы учащиеся «приняли задачу», то есть поняли её смысл, сделав целью своей деятельности. С этой целью оформляется краткая запись. Для разных видов задач это можно сделать по-разному.

1. С одной и той же станции в одно и то же время вышли в противоположных направлениях два поезда. Скорость одного поезда 50 км/ч, а другого 85 км/ч. Какое расстояние будет между поездами через 3 часа?

Краткую запись к данной задаче (и любой задаче на движение) удобно выполнить в виде схематического чертежа.

Графическая иллюстрация создаёт перед учениками пространственный образ, помогает в задачах на движение правильно расположить те неподвижные точки, с которыми условие связывает движущийся объект.

В задачах на нахождение двух или нескольких величин по их отношению и сумме (или разности), а также в задачах на части удобно краткую запись оформить в виде отрезков. Учащиеся должны научиться принимать подходящую величину за 1 часть, определять, сколько таких частей приходится на другую величину, на их сумму (разность).

Например:

2. За рубашку и галстук заплатили 40 р. Рубашка дороже галстука в 4 раза. Сколько стоит галстук?

3. В первой пачке было на 10 тетрадей больше, чем во второй, а всего 70 тетрадей. Сколько тетрадей было во второй пачке?

К этой задаче краткую запись можно выполнить в виде столбчатой диаграммы.

4. Для санатория купили 12 кресел и 50 стульев на общую сумму 9880 руб. Сколько стоит одно кресло, если один стул стоит 86 руб .

Оформить краткую запись можно с помощью таблицы:

Количество

Стоимость

5. В двух комнатах было 56 человек. Когда в первую пришли ещё 12 человек, а во вторую – 8 человек, то людей в комнатах стало поровну. Сколько человек было в каждой комнате первоначально?

Правильно составленная краткая запись указывает на сознательный анализ учеником условия и требования задачи и намечает план дальнейшего решения.

2.3.2. Организация работы учителя по составлению плана решения.

Чаще всего при организации поиска решения задачи применяется аналитико - синтетический метод.

Рассмотрим план рассуждений на примере задачи 1.

1. С одной и той же станции в одно и то же время вышли в противоположных направлениях два поезда. Скорость одного поезда 50 км/ч, а другого 85 км/ч. Какое расстояние будет между поездами через 3 часа?

В задаче требуется узнать расстояние между поездами через 3 часа.

Что для этого надо знать?

S, которое прошёл 1-й поезд за 3 часа, и s, которое прошёл 2-й поезд за 3 часа.

Что необходимо знать для определения этих расстояний?

- скорость каждого поезда, а это в задаче известно.

План решения следующий:

1) находим s, которое прошёл 1-й поезд за 3 часа

2) находим s, которое прошёл 2-й поезд за 3 часа

3) находим общее расстояние.

Рассмотренный метод составления плана решения задачи является аналитическим. Иногда поиск решения осуществляется синтетическим путём. Например, задача:

2. Молодой рабочий выполнил задание за 8 часов, изготовляя в час по 18 деталей. За сколько часов выполнит то же задание его наставник, если в час он делает на 6 деталей больше, чем молодой рабочий ?

Краткая запись

Количество

деталей в час

Время работы

Всего деталей

одинаковое

Наставник

на 6 дет. больше - часть 1

  • Когда не следует пользоваться шаблонными приемами вычислений
  • Cтраница 1


    Арифметическое решение довольно запутанное, но задача решается просто, если обратиться к услугам алгебры и составить уравнение.  

    При арифметическом решении должны быть выписаны все вопросы плана и арифметические действия, служащие ответами на них, а при алгебраическом - мотивы выбора неизвестных, составленные уравнения и их решение.  

    Шульц дал арифметическое решение этого уравнения, пользуясь произвольными значениями констант, и пришел к выводу, что эффективность фракционирования должна сильно повышаться при работе с разбавленными растворами.  

    Задача допускает чисто арифметическое решение, причем можно обойтись даже без действий над дробями.  

    А теперь приведем арифметическое решение этой задачи - решение, в котором удается обойтись вообще без составления уравнений.  

    Возможны еще и другие арифметические решения.  

    В этом параграфе некоторые задачи допускают как алгебраическое, гак в арифметическое решение; они могут быть использованы при повторении курса арифметики.  

    Они предусматривают применение арифметических действий по плану решения задачи. Арифметическое решение часто применяется в расчетах по химическим формулам и уравнениям, по концентрациям растворов и пр.  

    Но здесь мы приводим только арифметические решения задач.  

    Мы не подразделяем задачи на алгебраические и арифметические, так как задачи, решаемые арифметически, всегда можно решить и алгебраически. Наоборот, задачи, решаемые с помощью уравнений, нередко допускают более простое арифметическое решение. В отделе решений мы даем иногда арифметическое, иногда алгебраическое решение, но это не должно ни в какой мере стеснять инициативу учащегося в выборе способа решения.  

    Мы не подразделяем задачи на алгебраические и арифметические, так как задачи, решаемые арифметически, всегда можно решить и алгебраически. Наоборот, задачи, решаемые с помощью уравнений, нередко допускают более простое арифметическое решение. В отделе решений мы даем иногда арифметическое, иногда алгебраическое решение, но это не должно ни L какой мере стеснять инициативу учащегося в выборе способа решения.  

    Вот пример косвенной задачи: кусок сплава меди и цинка объемом в 1 дм3 имеет массу 8 14 кг. Здесь из условия задачи не видно, какие действия ведут к ее решению. При так называемом арифметическом решении нужно проявить подчас большую изобретательность, чтобы наметить план решения косвенной задачи. Каждая новая задача требует создания нового плана. Труд вычислителя затрачивается нерационально.  

    Для подтверждения своей мысли Петров изобретал задачи, которые вследствие нешабдаояности очень затрудняли опытных искусных учителей, но легко решались более способными учениками, еще не испорченными учебой. К числу таких задач (их Петров сочинил несколько) относится и задача об артели косцов. Опытные учителя, разумеется, легко могли решать ее при помощи уравнения, но простое арифметическое решение от них ускользало. Между тем, задача настолько проста, что привлекать для ее решения алгебраический аппарат совсем не стоит.  

    Вот пример косвенной задачи: кусок сплава меди и цинка объемом в дм3 весит 8 14 кг. Здесь из условия задачи не видно, какие действия ведут к ее решению. При так называемом арифметическом решении нужно проявить подчас большую изобретательность, чтобы наметить пл н решения косвенной задачи. Каждая новая задача требует создания нового плана. Труд вычислителя затрачивается нерационально.  

    Обобщение опыта.

    Текстовые задачи в школьном курсе математики.

    Арифметические способы решения задач.

    Солдатова Светлана Анатольевна

    учитель математики первой категории

    МОУ Угличский физико-математический лицей

    2017 г.

    «…пока мы стараемся увязывать обучение математике с жизнью, нам будет трудно обойтись без текстовых задач – традиционного для отечественной методики средства обучения математике».

    А.В.Шевкин

    С термином «задача» мы постоянно сталкиваются в повседневной жизни. Каждый из нас решает те или иные проблемы, которые мы называем задачами. В широком смысле слова под задачей понимается некоторая ситуация, требующая исследования и решения человеком .

    Задачи, в которых объекты - математические (доказательство теорем, вычислительные упражнения, свойства и признаки изучаемого математического понятия, геометрической фигуры), часто называют математическими задачами . Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми. В начальном обучении математике велика роль текстовых задач.

    Решая текстовые задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления.

    Существуют различные методы решения текстовых задач: арифметический, алгебраический, геометрический, логический, практический и т. д. В основе каждого метода лежат различные виды математических моделей. Например, при алгебраическом методе решения задачи составляются уравнения или неравенства, при геометрическом - строятся диаграммы или графики. Решение задачи логическим методом начинается с составления алгоритма.

    Следует иметь в виду, что практически каждая задача в рамках выбранного метода допускает решение с помощью различных моделей. Так, используя алгебраический метод, ответ на требование одной и той же задачи можно получить, составив и решив совершенно разные уравнения, используя логический метод - построив разные алгоритмы. Ясно, что в этих случаях мы так же имеем дело с различными методами решения конкретной задачи, которые называю способы решения.

    Решить задачу арифметическим методом - значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и ту де задачу во многих случаях можно решить различными арифметическими способами. Задача считается решенной различными способами, если ее решения отличаются связями между данными и искомыми, положенными в основу решений, или последовательностью этих связей.

    В традиционном российском школьном обучении математике текстовые задачи всегда занимали особое место. С одной стороны, практика применения текстовых задач в процессе обучения во всех цивилизованных государствах идет от глиняных табличек Древнего Вавилона и других древних письменных источников, то есть имеет родственные корни. С другой - пристальное внимание обучающих к текстовым задам, которое было характерно для России, - почти исключительно российский феномен.

    Одной из причин большого внимания к задачам заключается в том, что исторически долгое время целью обучения детей арифметике было освоением ими определенным кругом вычислительных умений, связанных с практическими расчетами. При этом основная линия арифметики - линия числа - еще не была разработана, а обучение вычислениям велось через задачи.

    Вторая причина повышенного внимания к использованию текстовых задач в России заключается в том, что в России не только переняли и развили старинный способ передачи с помощью текстовых задач математических знаний и приемов рассуждений, но и научились формировать с помощью задач важные общеучебные умения, связанные с анализом текста, выделением условий задачи и вопроса, составлением плана решения, постановкой вопроса и поиском условий, из которых можно получить на него ответ проверкой полученного результата.

    К середине 50-х годов XX в. текстовые задачи были хорошо систематизированы, сложилась развитая типология задач, включавшая задачи на части, на нахождение двух чисел по их сумме и разности, по их отношению и сумме (разности), на дроби, на проценты, на совместную работу, на растворы и сплавы, на прямую и обратную пропорциональность и т. д.

    К этому времени была хорошо разработана методика их применения в учебном процессе, но при проведении реформы математического образования конца 60-х годов отношение к ним изменилось. Пересматривая роль и место арифметики в системе школьных предметов, стремясь повысить научность изложения математики за счет более раннего введения уравнений и функций, математики и методисты-математики посчитали, что на обучение арифметическим способам решения задач тратится слишком много времени.

    А ведь именно текстовые задачи и арифметические способы их решения готовят ребенка к овладению алгеброй. А когда это произойдет, то алгебра научит более простым, чем арифметические, способам решения некоторых (но не всех!) задач. Другие же арифметические способы решения так и останутся в активном багаже ученика. Например, если ученика учили делить число в данном отношении, то он и в старших классах не будет делить число 15 в отношении 2:3 с помощью уравнения, он выполнит арифметические действия:

    1) ,

    2) ,

    3) 15 – 6 = 9.

    Хочу отметить, что я являюсь представителем именно того поколения школьников, которые были участниками вышеуказанной реформы. Я пошла в школу в 1968 году, и мой учебник в первом классе назывался «Арифметика». Оказывается, мы были последние, кто по нему учился. Во втором классе для меня было удивительным и необычным то, что предмет, а соответственно и учебник, моих подружек-первоклассниц назывался «математика». В третьем классе и мы уже учились по «математике». В среднем звене, а соответственно в старших классах, основным способом решения текстовых задач являлся алгебраический. Влияние реформы конца 60-х я ощущаю по сей день, т.к. у родителей, принимающих участие в учебном процессе детей, в силу того, что у них выработался определённый стереотип, сформировалось мнение, что задачи нужно решать именно с помощью уравнений. Мамы и папы, не зная других приёмов, настойчиво пытаются дома объяснить по-своему, что не всегда приносит пользу, даже порой только усложняет работу учителя.

    Ни в коем случае нельзя умалять ценность алгебраического способа решения задач, который является универсальным и порой единственным при решении более сложных задач. К тому же, довольно часто именно уравнение даёт подсказку для нахождения способа решения по действиям. Но практика показала, что раннее применение этого перспективного, с точки зрения дальнейшего использования в обучении, способа решения задач без достаточной подготовки малоэффективно.

    В 5-6 классах арифметическому способу решения текстовых задач необходимо уделять максимальное внимания и не торопиться переходить к решению задач с помощью уравнения. Как только ученик научился алгебраическому способу, его практически невозможно вернуть к «решению по действиям». Составив уравнение, главное – правильно его решить, не допустить вычислительной ошибки. И совсем не нужно задумываться над тем, какие производятся арифметические действия по ходу решения, что находится в результате каждого действия. А если проследить по шагам решение уравнения, мы увидим те же действия, что в арифметическом способе.

    Очень часто можно видеть, что ребенок не готов к решению задачи алгебраическим способом, когда вводится абстрактная переменную и появляется фраза «пусть икс…». Откуда взялся этот «икс», какие слова надо рядом с ним написать – на данном этапе ученику непонятно. И происходит это потому, что у детей такого возраста развито наглядно-образное мышление. А уравнение - абстрактная модель. Да и инструменты для решения уравнений у детей пятого, начала шестого класса отсутствуют. Исторически люди пришли к применению уравнений, обобщая решения задач, в которых приходилось оперировать такими понятиями как «часть», «куча» и т.п. Ребенок должен пройти тот же путь!

    Для успешной работы важно, чтобы учитель имел глубокое представление о текстовой задаче, о ее структуре, умел решать такие задачи различными способами.

    Много лет назад у меня в руках оказалось уже давно выпущенное пособие для учителей 5-8 классов (в современной школе – 5-9 классов) «Сборник московских математических олимпиад (с решениями)» 1967 г.в., автор которого - Галина Ивановна Зубелевич. Подавляющее большинство задач в нем решено арифметически, что меня очень заинтересовало. Позднее моё внимание привлекли два учебных пособия «Арифметика,6» , и «Арифметика,6» автор А.В. Шевкин, и пособие для учителя «Обучение решению текстовых задач в 5-6 классах» того же автора. Эти источники стали для меня началом работы над данной темой. Предложенные идеи мне показались очень актуальными и созвучными с моим пониманием заявленной темы, а именно:

    1) отказ от использования уравнений на ранней стадии обучения и возвращение к более широкому применению арифметических способов решения задач;

    2) более широкое использование «исторических» задач и Старинных способов их решения;

    3) отказ от хаотичного предложения учащимся задач на разные темы и рассмотрение цепочки задач от самых простых, доступных всем учащимся, до сложных и очень сложных.

    Типы текстовых задач по способу решения.

    Текстовые задачи можно условно разделить на арифметические и алгебраические. Данное разделение обусловлено выбором способа решения, более характерного (рационального) для той или иной задачи.

    Арифметические задачи таят в себе огромные возможности для того, чтобы научить школьников самостоятельно думать, анализируя неочевидные жизненные ситуации. Арифметика - самый короткий путь к пониманию природы, так как имеет дело с самыми простыми, самыми фундаментальными, экспериментальными фактами (например, что пересчёт

    камней «по строкам» и «по столбцам» всегда приводит к одному

    результату):

    5+5+5 = 3+3+3+3+3.

    Рассмотрим некоторые виды задач.

    «Куплено на одинаковую сумму два сорта товара, первого сорта вдвое меньше, чем второго. Их смешали и продали половину смеси по цене высшего, остальное - по цене низшего сорта. Сколько процентов прибыли или убытка получено при продаже?»

    Это, по существу, типичная задача, решающаяся введением произвольных единиц меры. Однако и при этом условии необходимое для решения оперирование неизвестными величинами носит здесь отчётливо выраженный алгебраический характер. Наряду с этим часто встречаются задачи, в которых, наоборот, арифметический путь решения значительно проще алгебраического. Это может зависеть от двух причин. В одних случаях переход от известного к неизвестному настолько прост, что составление уравнений (переход от неизвестного к известному) внесло бы ненужную громоздкость, замедляющую процесс решения. Такова, например, следующая задача:

    «Однажды Черт предложил Бездельнику заработать. - Как только ты перейдёшь через этот мост, - сказал он – деньги удвоятся. Можешь переходить по нему сколько хочешь раз, но после каждого перехода отдавай мне за это 24 копейки. Бездельник согласился и … после третьего перехода остался без гроша. Сколько денег было у него сначала?»

    Вторая - классическая задача, интересная парадоксальностью формулировки условия. Этапы «синтетического» решения развёртываются в ней, как и в предыдущей задаче, в порядке, противоположном ходу описанных событий.

    «Торговка яйцами продала первому покупателю половину всего числа имевшихся в её корзине яиц и ещё пол-яйца; второму покупателю - половину остатка и ещё пол-яйца, третьему - половину остатка и ещё пол-яйца, после чего у неё ничего не осталось. Сколько яиц было в корзине в начале?»

    В других случаях составление уравнения требует проведения такого рассуждения, которое само по себе достаточно для достижения цели. Это-арифметические задачи в полном смысле этого слова: алгебраическое их решение не легче, а труднее и обычно сопряжено с введением лишних неизвестных, которые потом приходится исключать, и т.п.

    Так, если, например, в задаче «Таня сказала: у меня на 3 брата больше, чем сестёр. На сколько в Таниной семье братьев больше, чем сестёр?» обозначить число братьев через x, число сестёр через y, то уравнение будет x − (y − 1) = 3, но если мы уже догадались, что надо написать y−1 (сестра сама себя не считала), то и так ясно, что братьев не на 3, а только на 2 больше, чем сестёр.

    Приведём ещё несколько примеров.

    «Я грёб вверх по течению и, проезжая под мостом, потерял шляпу. Через 10 мин я это заметил и, повернув и гребя с той же силой, нагнал шляпу в 1 км ниже моста. Какова скорость течения реки?»

    Решение: 1 (60:(10+10))=3(км/ч)

    «К моему приезду на станцию за мной обычно высылали машину. Приехав однажды на час раньше, я пошёл пешком и, встретив посланную за мной машину, прибыл с ней на место на 10 мин раньше обычного срока. Во сколько раз машина идёт быстрее, чем я пешком?»

    Рассмотрим решение данной задачи по действиям:

    1) 10:2=5 (мин) – время, которое оставалось машине для приезда на станцию в срок от места встречи.

    2) 60-5=55 (мин) - время, которое затратил пешеход на то же расстояние.

    3) 55:5=11(раз) машина едет быстрее.

    «Чтобы проплыть некоторое расстояние по течению на лодке, требуется времени втрое меньше, чем против течения. Во сколько раз скорость движения лодки больше скорости течения?»

    В этой задаче надо догадаться перейти от времени к расстояниям.

    Это очень хорошие арифметические задачи: они требуют ясного представления о соответствующей конкретной ситуации, а не действий по заученным формальным образцам.

    Вот ещё пример арифметической задачи, для решения которой не надо производить никаких «действий»:

    « Какой-то озорник из бутылки с дегтем перелил ложку дегтя в банку с медом. Перемешал тщательно, а затем такую же ложку смеси перелил из банки в бутылку с дегтем. Затем он проделал это ещё раз. Чего получилось больше: меда в бутылке с дегтем или дегтя в банке с медом? »

    Для решения задачи достаточно задать себе вопрос: куда девался из бутылки дёготь, который был вытеснен мёдом?

    Это не алгебра, не приведение подобных членов и не «перенесение из одной части в другую с обратным знаком». Это как раз та логика, связанная с воображаемыми, но имеющими в области изучаемых величин вполне реальное значение операциями, развитие и совершенствование которой входит в прямые задачи арифметики.

    Разграничения между арифметическими и алгебраическими по своему характеру задачами являются как бы несколько размытыми, так как они зависят от количественных признаков, в оценке которых можно расходиться, подобно тому как нельзя провести грань между «несколькими зёрнами» и «кучей зёрен».

    Остановимся подробнее на видах текстовых задач и способах их решения. Рассмотрим те задачи, которые многие склонны решать с помощью уравнений, а они при этом имеют простые и порой очень красивые решения по действиям.

    1. Нахождение задач по их кратному отношению и сумме или разности (на «части»).

    Знакомство с такими задачами надо начинать с тех, где речь идёт о частях в чистом виде. При их решении создаётся основа для решения задач на нахождение двух чисел по их отношению и сумме (разности). Учащиеся должны научиться принимать подходящую величину за 1 часть, определять, сколько таких частей приходиться на другую величину, на их сумму (разность).

    а) Для варенья на 2 части клубники берут 3 части сахара. Сколько сахара нужно взять на 3 кг клубники?

    б) Купили 2700 г сухофруктов. Яблоки составляют 4 части, груши – 3 части, сливы – 2 части. Сколько граммов яблок, груш и слив в отдельности?

    в) Девочка прочитала в 3 раза меньше страниц, чем ей осталось. Сколько страниц в книге, если она прочитала на 42 страницы меньше?

    Решение данной задачи желательно начинать с чертежа:

    1) – приходиться на 42 страницы.

    2) – 1 часть, или столько страниц прочитала девочка.

    3) – в книге.

    В дальнейшем ученики смогут решать и более сложные задачи.

    в) Задача С.А. Рачинского. Я провел год в Москве, в деревне и в дороге - и притом в Москве в 8 раз больше времени, чем в дороге, а в деревне в 8 раз более, чем в Москве. Сколько дней я провел в дороге, в Москве и в деревне?

    г) При уборке урожая в совхозе ученики собрали помидоров в 2 раза больше, чем огурцов, и в 3 раза меньше, чем картофеля. Сколько овощей в отдельности собрали ученики, если картофеля было собрано на 200 кг больше, чем помидоров?

    д) Говорит дед внукам: «Вот вам 130 орехов. Разделите их на 2 части так, чтобы меньшая часть, увеличенная в 4 раза, равнялась бы большей части, уменьшенной в 3 раза».

    е) Сумма двух чисел 37,75. Если первое слагаемое увеличить в 5 раз, а второе слагаемое – в 3 раза, то новая сумма окажется равной 154,25. Найти эти числа.

    Задачи на делении числа в данном отношении относятся к данному типу.

    2. Нахождение двух чисел по их сумме и разности.

    а) В двух пачках 50 тетрадей, причём в первой пачке на 8 тетрадей больше. Сколько тетрадей в каждой пачке?

    Решение задач такого вида я обязательно начинаю с чертежа. Затем предлагаю уравнять величины. Ребята предлагают два способа: убрать из первой пачки или добавить во вторую. Так определяются основные два способа: через удвоенное меньшее число или удвоенное большее число.

    Когда эти способы будут отработаны, уместно показать «старинный» способ решения задач такого вида. После вопроса «Каким образом можно уравнять стопки тетрадей, и при этом общее количество тетрадей не изменилось?» учащиеся догадываются, как это сделать, и делают вывод: чтобы найти меньшее число, надо из полусуммы вычесть полуразность, а, чтобы найти большее число, надо к полусумме прибавить полуразность. Сильные учащиеся могут обосновать этот способ с помощью преобразования буквенных выражений:

    С применением данного способа следующая задача решается в одно действие:

    б) Среднее арифметическое двух чисел равно 3, а их полуразность равна 1. Какова величина меньшего числа?

    меньшее число.

    Приём уравнивания применим и в задаче:

    в) 8 телят и 5 овец съели 835 кг корма. За это время каждому телёнку дали на 28 кг корма больше, чем овце. Сколько корма съел каждый телёнок и каждая овца?

    3. Задачи на «предположение».

    Задачи такого типа связаны с предполагаемыми действиями с предметами и величинами. В традиционной методике задачи такого типа имели и другие названия по наиболее известным задачам: на «синее и красное сукно», на «смешение ΙΙ рода». Думаю, что самой известной среди задач на «предположение» является старинная китайская задача.

    а) В клетке сидят фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Узнать число фазанов и число кроликов.

    Представьте, что в клетке сидят только фазаны. Сколько у них ног?

    Почему ног меньше? (Не все фазаны, среди них есть кролики). На сколько ног больше?

    Если одного фазана заменить на кролика, то на сколько увеличится число ног? (На 2)

    Можно выбрать другой способ, представив, что все кролики.

    Очень интересно другое рассуждение, данное старыми мастерами методики математики и вызывающее у детей большой интерес.

    - Представим, что на верх клетки, в которой сидят фазаны и кролики, мы положили морковку. Все кролики встанут на задние лапки, чтобы дотянуться до морковки. Сколько ног в этот момент будет стоять на земле?
    2·35= 70(н.)
    - Но в условии задачи даны 94 ноги, где же остальные?

    - Остальные не посчитаны - это передние лапы кроликов.

    - Сколько их?
    94 – 70 = 24(н.)
    - Сколько же кроликов?
    24:2 = 12
    А фазанов?
    35 – 12 = 23

    Усвоив алгоритм рассуждения, ребята легко решают и следующие задачи:

    б) Смешали 135 фунтов чая двух сортов общей стоимостью 540р. Сколько фунтов того и другого сорта в отдельности взяли, если фунт первого сорта стоил 5р., а фунт второго сорта стоил 3р.?

    в) На 94р. купили 35 аршин синего и красного сукна. За аршин синего сукна платили по 2р., а за аршин красного сукна платили по 4р. Сколько аршин того и другого сукна в отдельности купили?

    г) Хозяин купил 112 баранов старых и молодых и заплатил 49р. 20 алтын. За старого барана он платил по 15 алтын и по 4 полушки, а за молодого барана по 10 алтын. Сколько и каких баранов было куплено? Алтын – 3 копейки, полушка – четверть копейки.

    Интересной мне показалась задача из статьи И.В. Арнольда «Принципы отбора и составления арифметических задач» (1946г.) про вагоны:

    д) «Проезжая мимо станции, я заметил стоящий на станции товарный поезд из 31 вагона и услышал разговор смазчика со сцепщиком. Первый сказал: „105 осей всего пришлось проверить“. Второй заметил, что в составе много четырёхосных вагонов-втрое больше, чем двухосных, остальные трёхосные. На следующем перегоне я захотел, от нечего делать, подсчитать, сколько каких вагонов было в этом составе. Как это сделать?»

    Арифметическое решение - проще алгебраического и требует отчётливого представления о том, что двухосные и четырёхосные входят в состав (в количественном отношении) определенными группами (по 4 вагона). Воображаемая «замена» всех вагонов трёхосными- обычный и уже хорошо знакомый учащимся приём.

    Вспомогательным средством может служить графическое линейное отображение условий задачи.

    4. Задачи на движение.

    Данные задачи являются традиционно трудными. У учащихся должны быть хорошо сформированы такие понятия как скорость сближения и скорость удаления. Когда ученики научатся решать такие задачи с помощью уравнения, им будет гораздо проще добраться до ответа. Но легче - не значит полезнее. Много лет назад один мой ученик, довольно-таки сильный в математике, на уроке увлечённо искал арифметический способ решения задачи, в то время, когда весь класс её решил с помощью уравнения. Я хорошо запомнила его слова, очень мне понятные: «А мне не интересно уравнением».

    Приведу условия и решение нескольких задач.

    а) Старинная задача. Из Москвы в Тверь вышли одновременно два поезда. Первый проходил в час 39 вёрст и прибыл в Тверь двумя часами раньше второго, который проходил в час 26 вёрст. Сколько вёрст от Москвы до Твери?

    Решение:

    1) на столько отстал второй поезд.

    2) – скорость удаления.

    3) был в пути первый поезд.

    4) расстояние от Москвы до Твери .

    б) Два самолёта вылетели одновременно из Москвы в одном и том же направлении: один – со скоростью 350 км/ч, другой – со скоростью 280 км/ч. Через два часа первый уменьшил скорость до 230 км/ч. На каком расстоянии от Москвы второй самолёт догонит первый?

    Решение:

    1) скорость удаления.

    2) – на столько отстал второй самолёт.

    3) скорость сближения.

    4) столько времени потребуется, чтобы второй самолёт догнал первый.

    5) (км) – на таком расстоянии до Москвы второй самолёт догонит первый.

    в) Из двух городов, расстояние между которыми 560 км, вышли два автомобиля навстречу друг другу и встретились через 4 часа. Если скорость первого автомобиля уменьшить на 15%, а скорость второго увеличить на 20%, то встреча произойдёт тоже через 4 ч. Найти скорость каждого автомобиля.

    Решение:

    Примем за 100% или за 1 скорость первого автомобиля.

    1) скорость сближения.

    2) – составляет скорость второго от скорости первого.

    3) приходится на скорость сближения.

    4) скорость первого автомобиля.

    5) скорость второго автомобиля .

    г) Поезд за четверть минуты проходит мимо телеграфного столба, а за 50 с – мост длиною 0,7 км. Вычислить среднюю скорость движения поезда и его длину.

    Решение: При решении данной задачи учащиеся должны понять, что, пройти мост – пройти путь, равный длине моста и длине состава, пройти мимо телеграфного столба – пройти путь, равный длине состава.

    1) поезд проходит путь, равный длине моста.

    2) – скорость поезда.

    3) длина поезда.

    д) На прохождение пути между двумя пристанями пароходу необходимо на 40 мин больше, чем катеру. Скорость катера 40 км/ч, а парохода – 30 км/ч. Найти расстояние между пристанями.

    Решение: 40 мин ч

    1) отставание парохода.

    2) – скорость удаления

    2) – был в пути катер.

    3) расстояние между пристанями.

    Это лишь несколько задач на движения из их огромного многообразия. На их примере я хотела показать, как можно обойтись без уравнений, пока умения их решать у учащихся не сформированы. Естественно, такие задачи под силу сильным ученикам, но это большая возможность для их математического развития.

    5. Задачи на «бассейны».

    Это ещё один тип задач, вызывающий и интерес, и трудности у детей. Его можно назвать и задачами на совместную работу, к ним относится и часть задач на движение.

    Название данного типа даёт не без известная старинная задача:

    а) В городе Афинах был водоём, в который проведены 3 трубы. Одна из труб может наполнить бассейн в 1ч, другая, более тонкая, в 2 ч, третья, ещё более тонкая, в 3ч. Итак, узнай, за какую часть часа все три трубы вместе наполнят бассейн?

    Решение:

    1) (в./ч) – скорость заполнения через ΙΙ трубу трубу.

    2) (в./ч) – скорость заполнения через ΙΙΙ трубу.

    3) (в./ч) – общая скорость.

    4) (ч) – заполнят водоём 3 трубы.

    Можно предложить детям ещё одно интересное решение:

    За 6 часов через Ι трубу заполняется 6 водоёмов, через ΙΙ трубу – 3 водоёма, через ΙΙΙ трубу – 2 водоёма. Все трубы за 6 ч заполнят 11 водоёмов, соответственно на заполнение одного водоёма потребуется ч.

    Аналогичное решение имеет следующая задача:

    б) Лев съел овцу одни часом, а волк съел овцу за два часа, а пёс съел овцу в три часа. Сколько бы они скоро, все три – лев, волк и пёс – ту овцу съели, сочти. (Математические рукописи 17 века).

    в) Один человек выпьет кадь пития за 14 дней, а со женою выпьет туже кадь за 10 дней, и ведательно есть, в колико дней жена его особо выпьет ту же кадь. (из «Арифметики» Магницкого)

    Решение:

    1) (ч) – выпивают в день вместе.

    ) (ч) – выпивает в день муж.

    3) (ч) – выпивает в день жена.

    4) (д.) – потребуется жене, чтобы выпить кадь пития.

    г) Старинная задача. Дикая утка от южного моря до северного моря летит 7 дней. Дикий гусь от северного моря до южного моря летит 9 дней. Теперь дикая утка и дикий гусь вылетают одновременно. Через сколько дней они встретятся? (решение аналогичное)

    д) Из пунктов А и В одновременно навстречу друг другу вышли два пешехода. Они встретились через 40 мин после выхода, а через 32 мин после встречи первый пришёл в В. Через сколько часов после выхода из В второй пришёл в А? (ч) - будут работать вместе.

    7) – потребуется для разгрузки баржи.

    6. Задача Ньютона.

    Особый интерес у ребят вызывает задача о коровах, поедающих траву. Задача впервые была опубликована во «Всеобщей арифметике» И. Ньютона, но с той поры она не утратила своей актуальности и является одной из красивых арифметических задач, которую хотя и можно решить составлением уравнения, но намного красивее – сделать это с помощью последовательных рассуждений. Мне приходилось наблюдать, как над ней ломают голову старшеклассники, вводя несколько переменных, и в то же время легко разбираются в решении пятиклассники, если им подсказать идею решения.

    7) (п.) – буде съедено в день, а это и есть количество коров.

    Ответ: 20 коров.

    В данной работе приведены примеры и разобраны лишь некоторые из огромного количества текстовых задач.

    В завершении хотелось бы отметить, что необходимо приветствовать различные способы решения задач. Именно решение задач разными способами – чрезвычайно увлекательное занятие для учащихся различных возрастных групп. Интерес, любопытство, творчество, желание добиться успеха – это привлекательные стороны деятельности. Если ученик справляется с текстовыми задачами на уроках математики, то есть может проследить и пояснить логическую цепочку своего решения, дать характеристику всех величин, то он также успешно может решать задачи по физике и химии, он умеет сравнивать и анализировать, преобразовывать информацию на всех учебных предметах школьного курса.

    Литература.

    1. Арнольд И.В. Принципы отбора и составления арифметических задач // Известия АПН РСФСР. 1946. - Вып. 6 - С. 8-28.

    2. Зубелевич Г. И. Сборник задач московских математических олимпиад. – М.: Просвещение, 1971.

    3. Шевкин А. В. Обучение решению текстовых задач в 5-6 классах. – М.: Галс плюс,1998.

    4 . Шевкин А.В. Материалы курса «Текстовые задачи в школьном курсе математики»: Лекции 1-4. – М.: Педагогический университет «Первое сентября», 2006. 88 с.

    Дистанционное обучение педагогов по ФГОС по низким ценам

    Вебинары , курсы повышения квалификации , профессиональная переподготовка и профессиональное обучение . Низкие цены. Более 7900 образовательных программ. Диплом госудаственного образца для курсов, переподготовки и профобучения. Сертификат за участие в вебинарах. Бесплатные вебинары. Лицензия.