К вопросу организации коммуникационных инфраструктурных пространственных систем региона. Шаг за шагом

РАСЧЕТ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Методические указания

Для самостоятельной работы студентов

ИВАНОВО 2010

Составители: О. А. Бушуева

Е. В. ТЮТИКОВА

Редактор М. И. Соколов

Методические указания предназначены для студентов специальностей 140205, 140211, а также могут быть полезны студентам других специальностей, изучающим дисциплину «Электроснабжение».

Утверждены цикловой методической комиссией ЭЭФ.

Рецензент

кафедра электрических систем ГОУВПО «Ивановский государственный энергетический университет им. В.И. Ленина»

РАСЧЕТ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Методические указания

для самостоятельной работы студентов

Составители: Бушуева Ольга Александровна

Тютикова Екатерина Владимировна

Редактор Н. Б. Михалева

Подписано в печать Формат 60х84 1/16

Печать плоская. Усл. печ. л. 2,09. Тираж 200 экз. Заказ

ГОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина»

153003, Иваново, ул. Рабфаковская, 34

Отпечатано в УИУНЛ ИГЭУ

Введение 4

Проблема качества электроэнергии 4

Характеристика основных показателей качества

Электроэнергии 5

Расчет отклонений напряжения и

Оценка его допустимости 8

Оценка допустимости колебаний напряжения 10

Несинусоидальность напряжения. Расчет

Коэффициента искажения синусоидальности кривой

Напряжения и оценка его допустимости 15

Несимметрия напряжения. Расчет коэффициента

Несимметрии напряжения по обратной последовательности

И оценка его допустимости. 20

Задачи для самостоятельного решения 25

8. Контрольные вопросы 35

Библиографический список 37

Введение

Целью данных методических указаний является приобретение необходимых теоретических знаний и практических навыков проведения расчетов показателей качества электрической энергии, выполняемых при изучении темы “Качество электрической энергии”. Данная тема изучается студентами специальности 140205 в дисциплине “Специальные вопросы энергосистем”, а студентами специальности 140211 в дисциплине “Системы электроснабжения”.

Методические указания содержат необходимый теоретический материал и расчеты, которые проводятся при проектировании и эксплуатации электрических сетей различного назначения.

Указания окажут помощь студентам при подготовке к практическим занятиям, а также к междисциплинарному итоговому экзамену по специальности.

Проблема качества электроэнергии

Широкое применение в промышленности мощных нелинейных, несимметричных и резко изменяющихся нагрузок, способных существенно искажать основные характеристики электрической энергии, вызывает проблему электромагнитной совместимости электрооборудования и электрических сетей. Под электромагнитной совместимостью понимается способность потребителей электрической энергии нормальнофункционировать и не вносить в электрическую сеть недопустимых искажений, затрудняющих работу других потребителей.

При плохой электромагнитной совместимости, в первую очередь, снижается качество электрической энергии. Системы электроснабжения и электроприемники выполняют такими, чтобы наилучшее функционирование достигалось при питании их от однофазной или симметричной трехфазной системы напряжением заданной амплитуды и синусоидальной формы частотой 50 Гц. Однако в реальных электрических сетях в результате различных электромагнитных помех происходят отклонения от этих идеальных параметров, что приводит к ухудшению работы установок потребителей электроэнергии, проявляющемуся в технико-экономическом ущербе.

Пониженное качество электроэнергии оказывает негативное влияние как на работу отдельных электроприемников, так и на нормальное функционирование энергосистемы в целом. При снижении качества электроэнергии в электрических сетях имеют место следующие отрицательные последствия:

  • увеличение потерь электроэнергии во всех элементах электрической сети;
  • перегрев вращающихся машин, ускоренное старение изоляции, сокращение срока службы или выход из строя электрооборудования;
  • рост потребления электроэнергии и необходимой мощности электрооборудования;
  • нарушение работы и ложные срабатывания устройств релейной защиты и автоматики;
  • помехи в работе теле- и радиоаппаратуры, сбои электронных систем управления и вычислительной техники;
  • отрицательное влияние на линии связи и устройства автоблокировки на железных дорогах;
  • ухудшение показателей хозяйственной деятельности промышленных предприятий и т.д.

Наличие электрических связей между энергосистемами значительно расширяет зону отрицательного влияния снижения качества электроэнергии, обостряя тем самым проблему электромагнитной совместимости. Появилась необходимость оценивать и контролировать качество электроэнергии не только в данной точке присоединения потребителя к энергоснабжающей организации, но и в различных удаленных точках электрической сети.

Невнимание к качеству электроэнергии в процессе эксплуатации электрических сетей приводит к прогрессирующему расстройству электроснабжения потребителей и нарушениям работы электроприемников. Поэтому изучение вопросов оценки качества электроэнергии в различных точках электрической сети является важной задачей при подготовке инженеров электриков.

Основная масса электрического и электронного оборудования предусматривает работу от источника питания с определенными характеристиками, которые определяют минимальные и максимальные границы для среднеквадратического напряжения и частоты.

Пользователь в свою очередь надеется, что питание будет всегда непрерывным и в пределах погрешности. Поставщик этого не гарантирует, а при демократичной цене этого достичь практически невозможно.

Качество электропитания невозможно оценить заранее, т.к. оно проходит через несколько трансформаторов, много километров линий электропередач и смешивается с выходными параметрами других генераторов.

Понятие «хорошее качество электроэнергии» может быть использовано для описания постоянно поступающего электропитания в пределах допустимого отклонения напряжения и частоты и чистой синусоидальной волны.

«Плохое качество электроэнергии» описывает питание, которое отклоняется от норм, играет ли отклонение важную роль, зависит от цели установки, конструкции оборудования и установки.

Самые важные причины плохого качества электроэнергии подразделяются на две категории, описанные ниже.

  1. Проблемы качества энергосистемы
  2. Проблемы , связанные с установкой и нагрузкой

Четких границ между этими двумя категориями нет, т.к. помехи, вызванные с оборудованием на одной площадке, могут стать причиной поломки или повреждения оборудования на другой площадке. Например, сильная нагрузка от дуговых печей на производстве или в небольшом хозяйстве может вызвать при включении провал напряжения у нескольких соседних пользователей.

Результатом может быть полное отключение компьютерной сети, вызывающее более масштабный сбой, чем ожидает пользователь.

1. Проблемы качества энергосистемы

Обрыв электропитания

Полное отключение электропитания длительностью более минуты, вызванное выработкой или распределением электроэнергии, поломкой на подстанции, обрывом линии электропередач или распределением нагрузки в процессе перегрузки системы. Последствием является полное отключение подстанции.

Примеры обрывов электропитания

Временное прерывание

Отключение электропитания длительностью менее минуты, обычно вызванное устройством автоматического повторного включения, возобновляющим электропитание после временных прерываний. Компьютеры и оборудование связи отключаются, а при этом происходит потеря данных. Перезапуск может занять несколько минут, а восстановление данных может занять больше времени.

Переходные процессы

Резкие скачкообразные всплески напряжения, наложенные на напряжение электропитания. Могут быть вызваны несколькими факторами, включая остаточные явления от ударов молнии, от включения конденсаторов для компенсации реактивной мощности, а также включения индуктивной нагрузки.

Осциллограмма импульса напряжения

Недостаточное напряжение или перенапряжение

Долговременное резкое превышение расчетных параметров, вызванное поломкой переключателей ответвлений. При преднамеренном снижении напряжения для уменьшения нагрузки может стать причиной нестабильной работы оборудования, в том числе перезагрузки компьютеров, выхода из строя электромагнитных клапанов и перегревов двигателей с беличьей клеткой. Перенапряжение может стать причиной постоянного повреждения различного электрического и электронного оборудования.

Провалы или скачки напряжения

Кратковременные колебания напряжения, выходящие за рамки норм и вызванные включением или выключением мощных нагрузок, например больших моторов. В экстремальных условиях провалы напряжения могут стать причиной отключения оборудования, а скачки напряжения причиной поломок.

Асимметрия напряжения

Асимметрия фазного напряжения трехфазного электропитания по причине дифференциальной нагрузки фаз, что влет за собой появление циркулирующего ток (и перегрев) трансформаторов, а также пониженную эффективность работы трехфазных моторов.

Мерцания

Периодические колебания электропитания, вызванные изменениями циклической нагрузки, например, от работы системы приводов с переключающимися циклами. Результатом становится мерцание освещения

Гармонические колебания

Изменение напряжения, вызванное нелинейными нагрузками. Результатом становится перегрев из-за повышенного завихрения и гистерезисной потери в трансформаторах, перегрев и уменьшенный крутящий момент в моторах, а также перегрев в нулевых проводах и конденсаторах для компенсации реактивной мощности.

Искаженный сигнал, изображенный в виде ряда Фурье

Некоторые из дефектов, такие как прерывания и мерцания, пользователь замечает сразу, в то время как другие проявляются своим воздействием на оборудование и подстанции. Устойчивость оборудования к сбоям можно повысить несколькими способами.

Хотя данные проблемы и классифицируются как проблемы электропитания, причиной могут служить проблемы на площадке пользователя.

2. Установка и проблемы, связанные с нагрузкой

Существуют три основные проблемы с установками:

  1. Токи утечки на землю
  2. Провалы и скачки напряжения

Гармонические токи

Гармонические токи возникают из-за растущего преобладания используемых нелинейных нагрузок и вызывают проблемы в проводке, трансформаторах и моторах. Использование гармонических токов из сети электропитания налагает искажение на форму кривой напряжения, что при отсутствии проверки может стать причиной проблем для других пользователей электросети. Таким образом, устанавливаются рамки для дозволенной амплитуды основных гармоник.

Токи утечки на землю

Токи утечки на землю возникают из-за самого современного электронного оборудования.

Для отдельных единиц ток достаточно мал, часто менее 3.5мА, но что касается, например компьютеров, ток может быть достаточно большим. В дополнение ко всему существует значительный высокочастотный компонент в токе утечки, появляющийся в результате фильтрации переходных процессов в энергоблоках.

Основные системы заземления были созданы для функционирования в качестве защитного заземления (т.е. для обеспечения низко-импедансного тракта для тока короткого замыкания, для обеспечения защиты от перегрузки по току), а не для того чтобы справляться с постоянными токами утечки, особенно при высокой частоте. Высокая чувствительность к шумам от современных компьютеров и оборудования систем связи наложила дополнительные требования на систему заземления.

Провалы и скачки напряжения

Основные дефекты от отклонений напряжения приписываются к проблемам с электропитанием, но это не всегда является причиной.

Переключение тяжелых нагрузок, таких как большие моторы и дуговые печи, становятся причиной провалов напряжения и если нагрузка является индуктивной, то и переходных электрических перенапряжений. Провалы могут длиться несколько секунд, пока оборудование набирает скорость, становясь источником проблем для чувствительного к напряжению оборудования. Такие переходные перенапряжения могут вызывать поломку электронного оборудования, а посредством индуктивной связи с линией передачи данных и ошибки в обработке данных на компьютерах и системах связи.

В обстоятельствах, когда используются конденсаторы компенсации реактивной мощности, может возникнуть резонанс с индуктивным сопротивлением электропитания, что приводит к поломке конденсаторов.

Практические решения включают в себя отделение одной энергосистемы от другой и использование проводов с хорошей площадью поперечного сечений.

Определенные решения могут оказаться полезными когда источник проблемы не находится под контролем клиента.

В любом случае, использование превентивных мер на практике является наилучшим выбором.

СВОЙСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, ПОКАЗАТЕЛИ И НАИБОЛЕЕ ВЕРОЯТНЫЕ ВИНОВНИКИ УХУДШЕНИЯ качества электрической энергии

1 (приложение А ГОСТ).

Свойства электроэнергии

Показатель КЭ

Наиболее вероятные виновники ухудшения КЭ

Отклонение напряжения

Установившееся отклонение напряжения δUy

Энергоснабжающая организация

Колебания напряжения

а) Размах изменения напряжения δUt

б) Доза фликера Pt

Потребитель с переменной нагрузкой

Несинусоидальность напряжения

а) Коэффициент искажения синусоидальности кривой напряжения КU

б) Коэффициент n -ой гармонической составляющей напряжения КU(n)

Потребитель с нелинейной нагрузкой

Несимметрия трехфазной системы напряжений

а) Коэффициент несимметрии напряжений по обратной последовательности K 2U

б) Коэффициент несимметрии напряжений по нулевой последовательности K 0U

Потребитель с несимметричной нагрузкой

Отклонение частоты

Отклонение частоты Δf

Энергоснабжающая организация

Провал напряжения

Длительность провала напряжения Δt п

Энергоснабжающая организация

Импульс напряжения

Импульсное напряжение U имп

Энергоснабжающая организация

Временное перенапряжение

Коэффициент временного перенапряжения K перU

Энергоснабжающая организация

ПОКАЗАТЕЛИ КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

И ИХ ВЛИЯНИЕ НА ЭКСПЛУАТАЦИЮ ЭЛЕКТРОУСТАНОВОК.

1. Установившееся отклонение напряжения

Установившееся отклонение напряжения: нормально допустимые δUy (%) ±5 предельно допустимые δUy (%) ±10


Отклонение напряжения от номинальных значений происходит из-за суточных, сезонных и технологических изменений электрической нагрузки потребителя, а именно: изменения мощности компенсирующих устройств; регулирования напряжения генераторами электростанций и на подстанциях энергосистем; изменения схемы и параметров электрических сетей.

недонапряжение - ухудшение пуска, увеличение токов электродвигателей, что влечёт нагрев обмоток, нарушение изоляции и снижение срока службы двигателя;

Перегрузка регулируемых выпрямителей, преобразователей и стабилизаторов;

перенапряжение - перерасход электроэнергии, повышение реактивной мощности двигателей, выпрямителей с фазовым регулированием, пробой регулируемых выпрямителей, преобразователей и стабилизаторов.

Причинами несоответствий по установившемуся отклонению напряжения могут быть:

– неверно выбранный коэффициент трансформации трансформатора 6–10/0,4 кВ или не

проведенное своевременно сезонное переключение отпаек этих трансформаторов;

– значительная несимметрия фазных нагрузок в сетях 0,4 кВ;

– значительные потери напряжения в распределительной сети, превышающие предельные значения;

– отсутствие трансформаторов с регулированием напряжения под нагрузкой (РПН) в центре питания (ЦП);

– отсутствие автоматического регулятора напряжения (АРН) в ЦП или его неиспользование;

– некорректная работа АРН или неправильно выбранный закон регулирования напряжения в ЦП;

– разнородность нагрузок распределительных линий 6–10 кВ и несовместимость требований

потребителей всей распределительной сети на шинах ЦП;

– неверно заданные уставки регулирующих устройств на генераторах, повышающих

трансформаторах и автотрансформаторах связи, отсутствие или недостаточное использование

специальных устройств в межсистемных линиях и питающих сетях энергосистем, регулирующих

реактивную мощность (синхронных компенсаторов, батарей статических компенсаторов и

шунтирующих реакторов);

– превышение потребителем разрешенной ему мощности или нарушение договорных

условий с ЭСО по использованию специальных средств, регулирующих реактивную мощность

(батарей статических конденсаторов, синхронных двигателей);

– пониженная пропускная способность питающих сетей и др..

2. Колебания напряжения.

Колебания напряжения характеризуются следующими показателями:

- размахом изменения напряжения;

- дозой фликера.

Предельно допустимое значение суммы отклонения напряжения и размаха напряжения в электрических сетях 0,38 кВ равно ± 10% от номинального напряжения.

Доза фликера - это мера восприимчивости человека к воздействию колебаний светового потока, вызванных колебаниями напряжения в сети за определенный промежуток времени.

ГОСТом устанавливаются две характеристики дозы фликера: кратковременная (время наблюдения 10 мин.) и длительная (2 час.).

Колебания напряжения вызываются резким изменением нагрузки на рассматриваемом участке электрической сети, например, включением асинхронного двигателя с большой кратностью пускового тока, технологическими установками с быстропеременным режимом работы, сопровождающимися толчками активной и реактивной мощности (приводы реверсивных прокатных станов, дуговые сталеплавильные печи, сварочные аппараты и т. д.). Распространение колебаний напряжения в сторону системы электроснабжения происходит с затуханием колебаний по амплитуде. Причём, коэффициент затухания тем больше, чем мощнее система электроснабжения.


Компенсация осуществляется путем применения быстродействующих источников реактивной мощности, способных компенсировать изменения реактивной мощности. Для снижения влияния резкопеременой нагрузки на чувствительные электроприемники применяют способ разделения, при котором резкопеременную и чувствительную к колебаниям напряжения нагрузки присоединяют к разным трансформаторам.

К числу электроприемников, чрезвычайно чувствительных к колебаниям напряжения, относятся осветительные приборы, особенно лампы накаливания и электронная техника. Колебания напряжения вызывают мигание ламп накаливания (фликер-эффект), что порождает неприятный психологический эффект у человека, утомление зрения, снижение производительности, травматизм. При значительных колебаниях напряжения могут быть нарушены условия нормальной работы электродвигателей, возможно отпадание контактов магнитных пускателей с соответствующим отключением работающих двигателей, колебания фазы напряжения вызывают вибрацию электродвигателей.

3. Несинусоидальность напряжения

Несинусоидальность напряжения характеризуется следующими показателями:

- коэффициентом искажения синусоидальности кривой напряжения;

- коэффициентом n -ой гармонической составляющей напряжения.

Главной причиной искажений является использовании нелинейных электроприемников, таких как: вентильные преобразователи, электродуговые и сталеплавильные печи, установки дуговой и контактной сварки, преобразователи частоты, индукционные печи, ряд электронных технических средств (телевизоры, компьютеры), газоразрядные лампы и другие. Электронные приемники и газоразрядные лампы при работе создают невысокий уровень искажений, но так как таких электроприемников много, их общее влияние велико. В процессе работы эти устройства потребляют энергию основной частоты, которая расходуется не только на совершение полезной работы и покрытие потерь, но еще и на образование потока высших гармонических, который «выбрасывается» во внешнюю сеть.
Влияние:

рост потерь в электрических машинах, вибрации, нарушение работы автоматики защиты, увеличение погрешностей измерительной аппаратуры;

фронты несинусоидального напряжения воздействуют на изоляцию кабельных линий электропередач - учащаются однофазные короткие замыкания на землю. Аналогично кабелю, пробиваются конденсаторы.

Способы снижения несинусоидальности напряжения можно разделить на три группы:

Схемные решения: выделение нелинейных нагрузок на отдельную систему шин, группирование вентильных преобразователей по схеме умножения фаз, подключение нелинейной нагрузки к системе с большей мощностью короткого замыкания (Sкз);

Применение оборудования, характеризующегося пониженным уровнем генерации высших гармоник, например «ненасыщающихся» трансформаторов и многофазных вентильных преобразователей;

Использование фильтровых устройств: параллельных узкополосных резонансных фильтров, фильтрокомпенсирующих и фильтросимметрирующих устройств (ФКУ и ФСУ).

4. Несимметрия напряжений

Несимметрия напряжений характеризуется следующими показателями:

- коэффициентом несимметрии напряжений по обратной последовательности;

- коэффициентом несимметрии напряжений по нулевой последовательности.

К источникам несимметрии напряжений и токов относят следующие:

Нетранспонированные линии электропередачи и неравномерно присоединенные однофазные бытовые нагрузки, создающие систематическую несимметрию напряжений;

Разновременно включающиеся по фазам бытовые нагрузки и др., создающие случайную несимметрию напряжений.

Потребители электрической энергии, симметричное многофазное исполнение которых или невозможно, или нецелесообразно по технико-экономическим соображениям. К таким установкам относятся индукционные и дуговые электрические печи, электросварочные агрегаты, специальные однофазные нагрузки, осветительные установки и т. д.

Влияние: дополнительный нагрев электродвигателей, увеличение суммарных потерь, перегрев нулевых проводников, возможность пожара, увеличение сопротивлений заземляющих устройств, увеличение пульсаций выпрямленных напряжений, нарушение управления тиристорных преобразователей, некачественная компенсация реакт. мощности конденсаторными установками.

Несимметричные режимы напряжений в электрических сетях имеют место также в аварийных ситуациях при обрыве фазы, рабочего нуля или несимметричных коротких замыканиях.

В отличие от прямой последовательности, в обратной – обратное чередование (АСВ) фаз; соответственно, при превышении допустимого значения эта составляющая будет препятствовать вращению двигателей в заданную сторону, снижая его КПД. К обратной последовательности относятся гармоники с номерами 3n+2, где n изменяется от 0 до 12 (для прибора). При длительной работе с коэффициентом несимметрии по обратной последовательности K2U=2-4%, срок службы электрической машины снижается на 10-15%, а если она работает при номинальной нагрузке, срок службы снижается вдвое.

В нулевой последовательности чередование фаз отсутствует, все фазы имеют одинаковую начальную фазу. При превышении допустимого значения эта составляющая создаст повышенный ток в нулевом проводе. К нулевой последовательности относятся гармоники с номерами, кратными 3.

5. Отклонение частоты.

нормально допустимое отклонение частоты Δf (Гц) ±0,2 предельно допустимые отклонение частоты Δf (Гц) ±0,4

Отклонения частоты разность между действительным и номинальным значениями частоты:

снижение производительности электроприводов, снижение сроков службы электрических машин, искажения телевизионного изображения.

6. Провал напряжения.

Характеристикой провала напряжения является его длительность и глубина провала.

Предельно допустимое значение длительности провала напряжения в электрических сетях до 20 кВ включительно равно 30 сек.

Провал напряжения - внезапное понижение напряжения в точке электрической сети ниже 0,9 U ном, за которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от десяти миллисекунд до нескольких десятков секунд.

Длительность провала напряжения - интервал времени между начальным моментом провала напряжения и моментом восстановления напряжения до первоначального или близкого к нему уровня.

Причина - электромагнитные переходные процессы при коротких замыканиях, коммутации электрооборудования, обрыв нулевого провода.

отключение оборудования при провалах, выход из строя при ухудшающихся условиях работы.

7. Импульсное напряжение.

Импульс напряжения - резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд;

Амплитуда импульса - максимальное мгновенное значение импульса напряжения;

Длительность импульса - интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня.

Величина искажения напряжения при этом характеризуется показателем импульсного напряжения в вольтах, киловольтах и длительностью фронта импульса не более 5 мс. Величина импульсного напряжения стандартом не нормируется, но по статистике для грозовых и коммутационных импульсов величина напряжения при их длительности 0,5 амплитуды (мкс) может достигать: в сети 0,38 кВ - 4,5 кВ; в сети 6 кВ - 27 кВ; в сети 35 кВ - 148 кВ.

8. Временное перенапряжение.

Временное перенапряжение - повышение напряжения в точке электрической сети выше 1,1U ном продолжительностью более 10 мс, возникающее в системах электроснабжения при коммутациях или коротких замыканиях.

Коэффициент временного перенапряжения - величина, равная отношению максимального значения огибающей амплитудных: значений напряжения за время существования временного перенапряжения к амплитуде номинального напряжения сети.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

Филиал государственного бюджетного образовательного учреждения

высшего профессионального образования

«Самарский государственный технический университет»

в г. Сызрани

Кафедра ЭПП

«Причины ухудшения качества электроэнергии»

Выполнил:

студент гр. ЭВБ-481

Кашаева Д.В.

Проверил:

ст.преподаватель

Алексеева И.Ю.

Введение

1. Нормирование качества электроэнергии

2. Причины ухудшения качества электроэнергии

Список используемой литературы

Введение

Одним из подходов к диагностике неисправностей, связанных с качеством электроэнергии, является проверка в точке, которая расположена максимально близко к потребителю, испытывающему проблемы. Данный потребитель обычно является электронным устройством, чувствительным к качеству электроэнергии и испытывающим некоторые неполадки. Возможная причина заключается в низком качестве электроэнергии, однако частью вашей работы является отделить данную причину от других возможных причин (неисправность оборудования, сбой программного обеспечения и т.д.) Подобно детективу, вам необходимо начать работу с осмотра "места преступления". Такой подход, как проверка в восходящем направлении может отнять много времени. Он основан на внимательности и выполнении измерений основных параметров.

Альтернативным методом является движение от ввода в электросистему здания к точке возникновения неисправностей, используя трехфазный контрольный прибор. Подобный подход имеет максимальную эффективность, если причина неисправности находится в сети электроснабжения.

Тем не менее, на основе многочисленных проверок был сделан вывод, что причины подавляющего большинства проблем с качеством электроэнергии находятся на предприятиях (в зданиях). Как правило, наилучшее качество электроэнергии наблюдается на входе в электрическую систему здания (в точке подключения к коммунальным сетям электропитания). По мере движения по распределительной системе качество электроэнергии постепенно снижается. Это связано с проблемами, источником которых являются потребители, расположенные в здании. Другим характерным фактом является то, что 75 % всех проблем с качеством электроэнергии связано с проводкой и заземлением!

По этой причине многие службы, контролирующие качество электроэнергии, считают, что процесс диагностики неисправностей необходимо начинать с электрической системы здания, а затем, при необходимости, использовать контрольные приборы в точке подключения к коммунальным сетям. Ниже приведена процедура диагностики неисправности, основанная на восходящем подходе и призванная помочь вам выполнить данную работу.

1. Нормирование качества электроэнергии

Нормы на показатели качества электроэнергии устанавливаются действующим ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения» . Он устанавливает показатели и нормы КЭЭ в электрических сетях систем электроснабжения общего назначения переменного трехфазного и однофазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети, находящиеся в собственности различных потребителей электрической энергии, или приемники электрической энергии (точки общего присоединения).

Нормы КЭЭ, установленные стандартом, являются уровнями электромагнитной совместимости для электромагнитных помех в системах электроснабжения общего назначения. При соблюдении установленных норм КЭЭ обеспечивается электромагнитная совместимость электрических сетей энергоснабжающих организаций и электрических сетей потребителей электрической энергии. По показателям, регламентируемым данным стандартом, электрическая энергия подлежит обязательной сертификации.

Стандартом устанавливаются следующие показатели качества электроэнергии (ПКЭЭ):

- установившееся отклонение напряжения;

- размах изменения напряжения;

- доза фликера;

- коэффициент искажения синусоидальности кривой напряжения;

- коэффициент n-й гармонической составляющей напряжения;

- коэффициент несимметрии напряжений по обратной последовательности;

- коэффициент несимметрии напряжений по нулевой последовательности;

- отклонение частоты;

- длительность провала напряжения;

- импульсное напряжение;

- коэффициент временного перенапряжения.

В настоящей работе целью ставилось улучшение синусоидальности напряжения, поэтому в дальнейшем качество электроэнергии оценивается по двум показателям КЭЭ, характеризующим степень отклонения формы напряжения от синусоиды:

- коэффициенту искажения синусоидальности кривой напряжения;

- коэффициенту n-й гармонической составляющей напряжения.

Данные показатели определяются как значения, усредненные за 3 с.

Определение показателей, характеризующих синусоидальность напряжения, производится следующим образом. Коэффициент искажения синусоидальности напряжения определяют по формуле

, (1.1)

где - значение n-й гармонической составляющей напряжения; - значение первой (основной) гармоники напряжения.

Значения гармоник нормируется до. В ГОСТ 13109-97 определено, что качество электроэнергии по показателю коэффициента искажения синусоидальности кривой напряжения и коэффициенту n-й гармонической составляющей напряжения в точке общего присоединения считают соответствующим требованиям стандарта, если наибольшее из всех измеренных в течение 24 ч значений коэффициентов искажения не превышает предельно допустимого значения. Также значение коэффициента искажения, соответствующее вероятности 95 % за установленный период времени, не должно превышать нормально допустимого значения.

В табл. 1.1 даны нормально допустимое и предельно допустимое значения коэффициента искажения синусоидальности напряжения для сетей различного класса напряжения.

Таблица 1.1 Нормы качества электроэнергии по коэффициенту искажения синусоидальности кривой напряжения

Коэффициент n-й гармонической составляющей напряжения находят по выражению

. (1.2)

Нормально допустимые значения коэффициентов n-й гармонической составляющей напряжения приведены в табл. 1.2.

Таблица 1.2 Нормально допустимые значения коэффициентов n-й гармонической составляющей напряжения

Нечетные гармоники, некратные 3, при, кВ

Нечетные гармоники, кратные 3, при, кВ

Четные гармоники, кратные 3, при, кВ

0,2+ +1,3ЧЧ25/n

0,2+ +0,8ЧЧ25/n

0,2+ +0,6ЧЧ25/n

0,2+ +0,2ЧЧ25/n

Предельно допустимые значения коэффициентов гармонических составляющих напряжения принимают в 1,5 раза выше нормально допустимых значений, указанных в табл. 1.2.

В настоящее время не существует легитимного документа, устанавливающего методику расчета допустимого влияния потребителя на КЭЭ и процедуру оценки соблюдения им установленных требований . До 2001 г. в России действовали «Правила присоединения потребителя к сети общего назначения по условиям влияния на качество электроэнергии», а также «Правила применения скидок и надбавок к тарифам за качество электроэнергии» (утверждены Главгосэнергонадзором 14 мая 1991 г.), согласно которым при отступлении от нормативных значений ПКЭЭ по вине потребителя, со стороны электроснабжающей организации могут быть начислены штрафные санкции в размере до 10 % от тарифа за потребленную электрическую энергию на каждый нарушенный показатель.

Применительно к средней тяговой подстанции с переработкой до 30 млн. кВт·ч в год надбавка за нарушение норм только по одному ПКЭ могла составлять в ценах 2001 г. около 1,8 млн. руб. в год. Такие санкции существенно влияют на экономическое состояние систем тягового электроснабжения и оправдывают значительные затраты на улучшение качества электроэнергии в их сетях.

Однако в 2001 г. указанные выше правила были отменены как нормативные акты, противоречащие Гражданскому кодексу РФ. В настоящее время требования к КЭЭ по показателям, характеризующим форму напряжения, устанавливают в виде обязательства энергоснабжающей организации поддерживать значения ПКЭЭ в точке контроля качества электроэнергии в соответствии с нормами ГОСТ 13109-97 при условии непревышения потребителем установленного в технических условиях или в договоре электроснабжения допустимого влияния его электроустановок на значения ПКЭЭ в этой точке. Другими словами, санкции за нарушение КЭЭ по вине потребителя должны быть специально оговорены в договоре электроснабжения. Однако если система надбавок обозначена в договоре, то по данным ОАО «РЖД», ущерб от невыполнения требований ГОСТ 13109-97 только по двум показателям качества электроэнергии может ежегодно составлять порядка 1,2-1,4 млрд. руб. по сети железных дорог России .

Рассмотрим более подробно причины ухудшения синусоидальной формы напряжения в тяговой сети железных дорог переменного тока.

2. Причины ухудшения качества электроэнергии

С точки зрения качества напряжения для нормальной работы электрического оборудования, подключенного к сети переменного тока, оптимальной является идеально синусоидальная форма питающего напряжения. Однако на современных предприятиях значительное распространение получили нагрузки, вольт- и веберамперные характеристики, которые имеют нелинейный характер (нелинейные нагрузки). Подключение таких потребителей, имеющих в своем составе нелинейные элементы, зачастую приводит к отклонению формы напряжения от синусоиды.

К числу таких потребителей относятся различного рода вентильные преобразователи (главным образом тиристорные), установки дуговой и контактной электросварки, газоразрядные лампы, электродуговые сталеплавильные и руднотермические печи, силовые магнитные усилители и трансформаторы. Эти нагрузки потребляют из сети ток, кривая которого оказывается несинусоидальной, а во многих случаях и непериодической, в результате возникают нелинейные искажения кривой напряжения, т. е. несинусоидальные режимы.

Стоит отметить, что генераторами высших гармоник тока и напряжения являются только нелинейные безинерционные сопротивления. Инерционные же элементы, т. е. элементы, нелинейность вольтамперных характеристик которых обусловлена медленно протекающими процессами (в основном тепловыми), не вносят искажений в синусоидальность формы напряжения.

Основной причиной искажения синусоидальной формы напряжения в системах электроснабжения переменного тока промышленной частоты 50 Гц является наличие в системе различных типов нелинейных безынерционных сопротивлений, таких как полупроводниковые приборы, катушки с ферромагнитными сердечниками и другие элементы.

На железных дорогах, электрифицированных на переменном токе, особую часть нелинейных элементов составляют полупроводниковые приборы: диоды и тиристоры. Эти элементы активно применяются в выпрямительно-инверторных преобразователях электровозов, в которых происходит преобразование в режиме тяги переменного тока контактной сети в выпрямленный ток для питания тяговых двигателей (выпрямление), а также обратное преобразование в режиме рекуперации (инвертирование) электрической энергии тяговых двигателей, работающих в этом случае в режиме генератора.

Основное искажение формы переменного напряжения при питании потребителя пульсирующим током, полученным в процессе выпрямления, существует по причине возникновения естественной коммутации тока тиристоров выпрямителя, которая происходит в начале каждого полупериода переменного напряжения. Причем, чем больше величина нагрузки, мощнее потребитель, тем большая степень этого искажения может быть получена в точке присоединения к сети системы электроснабжения.

Физическая сущность искажения синусоидальности переменного напряжения заключается в возникновении режима короткого замыкания цепи переменного тока (обмоток силового трансформатора электровоза) в интервалы коммутации тока тиристорных плеч выпрямителя, в результате которого на этих интервалах происходит провал в кривой синусоидального напряжения. Эти провалы искажают форму кривой напряжения и приводят к возникновению высших гармонических составляющих в частотном спектре напряжения. Наибольшую амплитуду при работе электровоза имеют нечетные (3-, 5-, 7- и 9-я) гармоники.

Отклонение формы переменного напряжения от синусоиды является одним из основных параметров, характеризующих качество электрической энергии в системе тягового электроснабжения. Важность этого параметра определяется тем, что искажения напряжения в контактной сети оказывают влияние, как на эксплуатационные характеристики электровозов, так и на систему тягового электроснабжения. Так, высшие гармоники напряжения, генерируемые электровозом, приводят к появлению добавочных потерь в обмотках вспомогательных машин электровоза. В силовом трансформаторе гармоники напряжения вызывают увеличение потерь в стали, связанные с гистерезисом, а также увеличение потерь в меди обмоток . Это сокращает срок службы изоляции, а также повышает затраты электроэнергии на тягу поездов.

Влияние несинусоидальности напряжения на индукционные и электронные приборы учета электроэнергии, потребляемой электровозом, приводит к значительному увеличению погрешности результатов измерений этих приборов . Гармоники также могут нарушать работу устройств релейной защиты или ухудшать их характеристики.

Повышенные значения коэффициента в тяговой сети определяется не только применением в силовых цепях электровоза полупроводниковых приборов, которые генерируют гармоники в частотном диапазоне от 150 до 1000 Гц, но и переходными процессами в системе «электровоз - контактная сеть», в результате которых возникают высокочастотные колебания напряжения на токоприемнике электровоза с частотами 750-1950 Гц.

Колебания напряжения на токоприемнике вызваны процессами перехода выпрямителя электровоза из режима проводимости в режим коммутации в момент подачи управляющих импульсов на тиристоры (коммутационные колебания) и обратным переходом после окончания коммутационного процесса (послекоммутационные колебания). При этом их амплитуда при положении электровоза ближе к середине фидерной зоны может быть значительной. Частота этих колебаний напряжения определяется соотношением индуктивности цепи переменного тока электровоза и емкости контактной сети относительно земли.

Свободные коммутационные и послекоммутационные колебания напряжения, формирующиеся на токоприемнике, трансформируются на сторону вторичного напряжения электровоза, где создают перенапряжения на тиристорных плечах преобразователя. Так как колебания напряжения повторяются каждый полупериод питающего напряжения, то эта периодичность ограничивает вентильную прочность тиристоров выпрямителя и вследствие этого способствует быстрому выходу их из строя. Кроме того, эти колебания появляются в кривой выпрямленного напряжения, воздействуя на электромагнитные процессы, протекающие в цепи выпрямленного тока. электрический токоприемник напряжение

Коммутационные и послекоммутационные колебания способствуют появлению в частотном спектре напряжения контактной сети гармоник, соответствующих частотам этих колебаний. Иными словами, колебания напряжения, обусловленные началом и окончанием процесса коммутации тока тиристоров электровоза, снижают качество электроэнергии в контактной сети.

Круг вопросов, посвященных проблеме высших гармоник в электрических сетях, состоит в следующем:

- оценке электромагнитной совместимости источников высших гармоник и других нагрузок, т. е. влиянии гармоник на электроустановки;

- оценке возникающего при этом экономического ущерба;

- количественной оценке высших гармоник тока, генерируемых различными нелинейными нагрузками;

- прогнозировании значений высших гармоник тока и напряжения, а также снижении уровня гармонических составляющих.

Вывод

Электрическая энергия как товар используется практически во всех процессах, связанных с деятельностью человека. Обладая специфическими свойствами, электроэнергия непосредственно участвует при создании других видов продукции, влияя на их качество. Понятие качества электрической энергии (КЭЭ) отличается от понятия качества других видов продукции. Каждый электроприемник предназначен для работы при определенных параметрах электрической энергии: номинальных частоте, напряжении, токе и т. п., поэтому для нормальной его работы должно быть обеспечено требуемое КЭЭ.

Таким образом, качество электрической энергии определяется совокупностью ее характеристик, при которых электроприемники могут нормально работать и выполнять заложенные в них функции.

Качество электроэнергии часто характеризуют также термином «электромагнитная совместимость». Под электромагнитной совместимостью понимают способность электроприемников нормально функционировать в его электромагнитной среде, т. е. в электрической сети, к которой он присоединен, не создавая недопустимых электромагнитных помех для других приемников, работающих в той же среде.

Проблема электромагнитной совместимости промышленных потребителей с питающей сетью возникла в связи с широким использованием устройств, которые при всей своей экономичности и технологической эффективности оказывают отрицательное влияние на КЭЭ. Бытовые потребители, как и промышленные, также должны иметь электромагнитную совместимость с другими потребителями, включенными в общую электросеть, не снижать эффективность их работы и не ухудшать показатели КЭЭ.

КЭЭ в промышленности оценивается по технико-экономическим показателям, которые учитывают ущерб, возникающий вследствие порчи материалов и оборудования, расстройства технологического процесса, ухудшения качества выпускаемой продукции, снижения производительности труда - так называемый технологический ущерб. Кроме того, существует и электромагнитный ущерб от некачественной электроэнергии, который характеризуется увеличением потерь электроэнергии, выходом из строя электротехнического оборудования, нарушением работы автоматики, телемеханики, связи, электронной техники и т. д.

Качество электроэнергии связано с надежностью электроснабжения, поскольку нормальным режимом электроснабжения потребителей является такой режим, при котором потребители получают электроэнергию бесперебойно, в количестве, заранее согласованном с энергоснабжающей организацией, и нормированного качества.

Список используемой литературы

1. ПРАВИЛА УСТРОЙСТВА ЭЛЕКТРОУСТАНОВОК (ПУЭ) (Седьмое издание, переработанное и дополненное, с изменениями) 2015г.

2. Ресурсы специализированного электроэнергетического Интернет сайта forca.ru

Размещено на Allbest.ru

Подобные документы

    Показатели качества электроэнергии. Причины, вызывающие отклонения параметров сети от номинальных значений. Отклонение напряжения и его колебания. Отклонение фактической частоты переменного напряжения. Несинусоидальность формы кривой напряжения и тока.

    контрольная работа , добавлен 13.07.2013

    Электромагнитная совместимость в электроэнергетике. Показатели качества электрической энергии, методы их оценки и нормы. Влияние отклонения напряжения на потребителей. Быстрые флуктуации. Влияние колебаний напряжения на работу электрооборудования.

    презентация , добавлен 12.11.2013

    Уровни несимметрии, несинусоидальности и отклонения напряжения на птицефабрике "Акашевская". Анализ динамики показателей качества электрической энергии для различных периодов времени. Взаимное влияние качества электроэнергии и электрооборудования.

    дипломная работа , добавлен 28.06.2011

    Разработка методики и внедрение модели единой автоматизированной системы контроля качества электроэнергии (АСККЭ) в регионе на напряжение от 0,4 кВ до 220 кВ с одновременным и непрерывным контролем и управлением показателей качества электроэнергии (ПКЭ).

    Исследование особенностей применения трансформаторов тока и напряжения. Изучение схемы подключения приборов и реле к вторичным обмоткам. Измерение показателей качества электроэнергии. Расчетные счетчики активной и реактивной энергии трехфазного тока.

    презентация , добавлен 23.11.2014

    Влияние отклонения показателей качества электрической энергии от установленных норм. Параметры качества электрической энергии. Анализ качества электрической энергии в системе электроснабжения городов-миллионников. Разработка мероприятий по ее повышению.

    дипломная работа , добавлен 21.01.2017

    Оценка влияния несимметрии, несинусоидальности и отклонения напряжения на работу электрооборудования на примере предприятия агропромышленного комплекса. Динамика показателей качества электрической энергии. Расчет потерь электроэнергии и высших гармоник.

    дипломная работа , добавлен 26.06.2011

    Длительность провала напряжения. Роль провалов напряжения для улучшения качественных характеристик сети. Оценка коэффициента несимметрии напряжения по обратной последовательности. Повышение коэффициента мощности электрической тяги переменного тока.

    контрольная работа , добавлен 18.05.2012

    Электрические сети переменного и постоянного тока. Синусоидальный ток и напряжение. Влияние несинусоидальности напряжения на работу потребителей электрической энергии. Коэффициент искажения напряжения. Снижение несинусоидальности напряжений и токов.

    курсовая работа , добавлен 29.03.2016

    Повышение качества электрической энергии за счет снижения несимметрии на тяговых подстанциях переменного тока системы тягового электроснабжения с помощью трансформаторных приставок. Закон изменения коэффициента напряжений по обратной последовательности.

В соответствии с ГОСТ 13109-87 различают основные и дополнительные показатели качества электроэнергии.

К основным показателям качества электроэнергии , определяющим свойства электрической энергии, которые характеризуют ее качество, относятся:

1) отклонение напряжения (δU , %);

2) размах изменения напряжения (δU t, %);

3) доза колебаний напряжений (ψ , %);

4) коэффициент несинусоидальности кривой напряжения (k нсU , %);

5) коэффициент n -й гармонической составляющей напряжения нечетного (четного) порядка (kU(n ), %);

6) коэффициент обратной последовательности напряжений (k 2U , %);

7) коэффициент нулевой последовательности напряжений (k 0U , %) ;

8) длительность провала напряжения (Δt пр, с) ;

9) импульсное напряжение (U имп, В, кВ) ;

10) отклонение частоты (Δf , Гц).

Дополнительные показатели качества электроэнергии , представляющие собой формы записи основных показателей качества электроэнергии и используемые в других нормативно-технических документах:

1) коэффициент амплитудной модуляции напряжений (k мод);

2) коэффициент небаланса междуфазных напряжений (k неб.м);

3) коэффициент небаланса фазных напряжений (k неб.ф).

Отметим допустимые значения названных показателей качества электроэнергии, выражения для их определения и области применения. В течение 95% времени суток (22,8 ч) показатели качества электроэнергии не должны выходить за пределы нормально допустимых значений, а в течение всего времени, включая поелсаварийные режимы, они должны находиться в пределах максимально допустимых значений.

Контроль качества электроэнергии в характерных точках электрических сетей осуществляется персоналом предприятия электрических сетей. При этом длительность измерения показателя качества электроэнергии должна составлять не менее суток.

Отклонения напряжения

Отклонение напряжения это один из самых важных показателей качества электроэнергии. Отклонение напряжения находится по формуле

δU t = ((U(t) - Un)/Un) х 100%

где U(t) - действующее значение напряжения прямой последовательности основной частоты, или просто действующее значение напряжения (при коэффициенте несиннусоидальности, меньшем или равном 5%), в момент времени t , кВ; Un - номинальное напряжение, кВ.

Величина U t = 1/3 (U AB(1) + U BC(1) + U AC(1)) , где U AB(1) ,U BC(1) , U AC(1) - действующие значения междуфазных напряжений основной частоты.

Из-за изменения нагрузок во времени, изменения уровня напряжений и других факторов изменяется величина падения напряжения в элементах сети и, следовательно, уровень напряжения U t. В результате оказывается, что в различных точках сети в один и тот же момент времени, а в одной точке - в разные моменты, отклонения напряжения различны.

Нормальная работа электроприемников вестях напряжением до 1 кВ обеспечивается при условии, что отклонения напряжения на их входе равны ±5% (нормальное значение) и ±10% (максимальное значение). В сетях напряжением 6 - 20 кВ устанавливается максимальное отклонение напряжения ±10%.

Мощность, потребляемая лампами накаливания, прямо пропорциональна подведенному напряжению в степени 1,58, световая отдача ламп - в степени 2,0, световой поток - в степени 3,61, срок службы ламп - в степени - 13.57. Работа люминесцентных ламп от отклонения напряжений зависит меньше. Так срок их службы изменяется на 4% при отклонении напряжения на 1%.

Снижение освещенности рабочих мест происходит при уменьшении напряжения, что приводит к снижению производительности труда работающих и ухудшению их зрения. При больших снижениях напряжения люминесцентные лампы не загораются или мигают, что приводит к сокращению срока их службы. При повышении напряжения срок службы ламп накаливания резко снижается.

От уровня напряжения зависит скорость вращения асинхронных электродвигателей и, следовательно, их производительность, а также потребляемая реактивная мощность. Последнее отражается на величине потерь напряжения и мощности на участках сети.

Снижение напряжения приводит к увеличению длительности технологического процесса в электротермических и электролизных установках, а также к невозможности устойчивого приема в коммунальных сетях телевизионных передач. В последнем случае применяются так называемые стабилизаторы напряжения, которые сами потребляют значительную реактивную мощность и у которых имеются потери мощности в стали. На их изготовление расходуется дефицитная трансформаторная сталь.

Для обеспечения требуемого напряжения на шинах низкого напряжения всех ТП рименяют так называемое встречное регулирование напряжения в центре питания. Здесь в режиме максимальных нагрузок поддерживается максимально допустимое напряжение на шинах ЦП, а в режиме минимальных нагрузок - минимальное напряжение.

При этом должно применяться и так называемое местное регулирование напряжения в каждом трансформаторном пункте путем установки переключателя ответвлений распределительных трансформаторов в соответствующее положение. В сочетании с централизованным (в ЦП) и указанным местным регулированием напряжения применяются регулируемые и нерегулируемые конденсаторные установки, также относящиеся к средствам местного регулирования напряжения.

Размах изменения напряжения

Размах изменения напряжения представляет собой разность между амплитудными или действующими значениями напряжения до и после одиночного изменения напряжения и определяется по формуле

δUt = ((U i - U i+1)/√2U н) х 100%

где U i и U i+1 - значения следующих друг за другом экстремумов или экстремума и горизонтального участка огибающей амплитудных значений напряжения.

К размахам изменения напряжения относят одиночные изменения напряжения любой формы с частотой повторения от двух раз в минуту (1/30 Гц) до одного раза в час, имеющие среднюю скорость изменения напряжения более 0,1% в секунду (для ламп накаливания) и 0,2% в секунду для остальных приемников.

Быстрые изменения напряжения вызываются ударным режимом работы двигателей металлургических прокатных станов тяговых установок железных дорог, луговых сталеплавильных печей, сварочной аппаратуры, а также частыми пусками мощных короткозамкнутых асинхронных электродвигателей, когда их пусковая реактивная мощность составляет несколько процентов мощности короткого замыкания.

Число изменений напряжения в единицу времени, т. е. частота изменения напряжения, находится по формуле F = m/T , где m - число изменений напряжения за время Т, Т - общее время наблюдения размахов напряжения.

Основные требования, предъявляемые к колебаниям напряжения, обусловливаются соображениями защиты зрения человека. Установлено, что наибольшая чувствительность глаза к мерцанию света находится в области частоты, равной 8,7 Гц. Поэтому для ламп накаливания, обеспечивающих рабочее освещение при значительных зрительных напряжениях, размах напряжения допускается не более 0,3%, для ламп накачивания в быту - 0,4%, для люминесцентных ламп и других электроприемников - 0,6.

Допускаемые размахи колебаний приведены на рис. 1.

Рис. 1. Допустимые размахи колебаний напряжения: 1 - рабочее освещение лампами накаливания при большом зрительной напряжении, 2 - бытовые лампы накаливания, 3 - люминесцентные лампы

Область I соответствует работе насосов и бытовых приборов, II - кранов, подъемников, III - дуговых печей, ручной контактной сварке, IV - работе поршневых компрессоров и автоматической контактной сварке.

Для снижения размаха изменения напряжения в осветительной сети применяют раздельное питание приемников осветительной сети и силовой нагрузки от разных силовых трансформаторов, продольную емкостную компенсацию питающей сети, а также синхронные электродвигатели и искусственные источники реактивной мощности (реакторы или конденсаторные батареи, ток которых формируется с помощью управляемых вентилей для получения требуемой реактивной мощности).

Доза колебаний напряжения

Доза колебаний напряжения идентична размаху изменения напряжения и в действующих электрических сетях вводится по мере их оснащения соответствующими приборами. При использовании показателя "доза колебаний напряжения" оценка допустимости размаха изменения напряжения может не производиться, так как рассматриваемые показатели взаимозаменяемы.

Доза колебаний напряжения также представляет собой интегральную характеристику колебаний напряжения, вызывающих у человека накапливающееся за установленный период времени раздражение из-за миганий света в диапазоне частот от 0,5 до 0,25 Гц.

Допустимое максимальное значение дозы колебаний напряжения (ψ, (%) 2) в электрической сети, к которой присоединяются осветительные установки, не должно превосходить: 0,018 - с лампами накаливания в помещениях, где требуется значительное зрительное напряжение; 0,034 - с лампами накаливания во всех других помещениях; 0,079 - с люминесцентными лампами.

Коэффициент несинусоидальности кривой напряжения

При работе в сет мощных выпрямительных и преобразовательных установок, а также дуговых печей и установок для сварки, т. е. нелинейных элементов, происходит искажение кривых тока и напряжения. Несинусоидальные кривые тока и напряжения представляют собой гармонические колебания, имеющие различные частоты (промышленная частота - это низшая гармоника, все остальные по отношению к ней - высшие гармоники).

Высшие гармоники в системе электроснабжения вызывают дополнительные потери энергии, сокращают срок службы косинусных конденсаторных батарей, электродвигателей и трансформаторов, приводят к трудностям при наладке релейной защиты и сигнализации, а также эксплуатации электроприводов с тиристорным управлением и т. д.

где N - порядок последней из учитываемых гармонических составляющих, Un - действующее значение n -й (n = 2, ... N ) гармонической составляющей напряжения, кВ.

Нормальные и максимальные допустимые значения k нсU не должны соответственно превышать: в электрической сети напряжением до 1 кВ - 5 и 10%, в электрической сети 6 - 20 кВ - 4 и 8%, в электрической сети 35 кВ - 3 и 6%, в электрической сети 110 кВ и выше 2 и 4%.

Для снижения высших гармоник применяются силовые фильтры, представляющие собой последовательное соединение индуктивного и емкостного сопротивлений, настроенных в резонанс на определенную гармонику. С целью исключения гармоник низших частот применяют преобразовательные установки с большим числом фаз.

Коэффициент n -й гармонической составляющей напряжения нечетного (четного) порядка

Коэффициент n -й гармонической составляющей напряжения нечетного (четного) порядка представляет собой отношение действующего значения n -й гармонической составляющей напряжения к действующему значению напряжения основной частоты, т. е. kU(n) = (Un /U н) х 100%

По значению коэффициента kU(n) определяется спектр n -х гармонических составляющих, на подавление которых должны быть рассчитаны соответствующие силовые фильтры.

Нормальные и максимальные допустимые значения не должны соответственно превышать: в электрической сети напряжением до 1 кВ - 3 и 6%, в электрической сети 6 - 20 кВ 2,5 и 5% , в электрической сети 35 кВ - 2 и 4 %, в электрической сети 110 кВ и выше 1 и 2 %.

Несимметрия напряжений

Несимметрия напряжений возникает из-за нагрузки однофазных электроприемников. Так как распределительные сети напряжением выше 1 кВ работают с изолированной или компенсированной нейтралью, то обусловлена появлением напряжения обратной последовательности. Несимметрия проявляется в виде неравенства и характеризуется коэффициентом обратной последовательности напряжений :

k 2U = (U 2(1) /U н) х 100%,

где U 2(1) - действующее значение напряжения обратной последовательности основной частоты трехфазной системы напряжений, кВ. Значение величины U 2(1) можно получить измерением трех напряжений основной частоты, т. е. U А (1) , U B(1) , U C(1) . Тогда

где y А, y B и y C - проводимости фаз А, B и C приемника.

В сетях напряжением выше 1 кВ несимметрия напряжений проявляется в основном из-за однофазных электротермических установок (дуговых печей косвенного действия, печей сопротивления, индукционных канальных печей, установок электрошлакового переплава и др.

Наличие напряжения обратной последовательности приводит к дополнительному нагреву обмоток возбуждении синхронных генераторов и увеличению их вибрации, к дополнительному нагреву электродвигателей и резкому сокращению срока службы их изоляции, снижению реактивной мощности, генерируемой силовыми конденсаторами, дополнительному нагреву линий и трансформаторов? увеличению количества ложных срабатываний релейной защиты и т д.

На зажимах симметричного элсктроприемника нормально допустимый коэффициент несимметрии равен 2%, а максимально допустимый - 4%.

Влияние несимметрии значительно уменьшается при питании однофазных электроприемников от отдельных трансформаторов, а также при применении управляемых и неуправляемых симметрирующих устройств, компенсирующих эквивалентный ток обратной последовательности, потребляемый однофазными нагрузками.

В четырехпроводных сетях напряжением до 1 кВ несимметрия, обусловленная однофазными приемниками, подключенными к фазным напряжениям, сопровождается прохождением тока в нулевом проводе и, следовательно, появлением напряжения нулевой последовательности.

Коэффициент нулевой последовательности напряжений k 0U = (U 0(1) /U н.ф.) х 100%,

где U0(1) -действующее значение напряжения нулевой последовательности основной частоты, кВ; U н.ф. - номинальное значение фазного напряжения, кВ.

Величина U 0(1) определяется измерением трех фазных напряжений основной частоты, т. е.

где у A , у B , у C , y O - проводимости фаз А, В, С приемника и проводимость нулевого провода; U A (1 ) , U B(1) , U C(1) - действующие значения фазных напряжений.

Допустимое значение U 0(1) ограничивается требованиями, предъявляемыми к отклонению напряжения, которые удовлетворяются коэффициентом нулевой последовательности, равным 2% в качестве нормального уровня и 4% максимального уровня.

Снижение значения может быть достигнуто рациональным распределением однофазной нагрузки между фазами, а также увеличением сечения нулевого провода до сечения фазных проводов и применением трансформаторов в распределительной сети с группой соединения "звезда - зигзаг".

Провал напряжения и интенсивность провалов напряжения

Провал напряжения - это внезапное значительное понижение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня через промежуток времени от нескольких периодов до нескольких десятков секунд.

Длительность провала напряжения Δt пр - интервал времени между начальным моментом провала напряжения и моментом восстановления напряжениядо первоначального или близкого к нему уровня (рис. 2), т.е. Δt пр = t вос - t нач.

Рис. 2. Длительность и глубина провала напряжения

Значение Δt пр составляет от нескольких периодов до нескольких десятков секунд. Провал напряжения характеризуется интенсивностью и глубиной провала δ Uпр, представляющей собой разность между номинальным значением напряжения и минимальным действующим значением напряжения Umin в течение провала напряжения, и выражается в процентах номинального значения напряжения или в абсолютных единицах.

Величина δ Uпр определяется следующим образом:

δUпр = ((Uн - Umin ) /Uн) х 100% или δUпр = Uн - Umin

Интенсивность провалов напряжения m * представляет собой частоту появления в сети провалов напряжения определенной глубины и длительности, т. е. m * = (m(δUпр, Δ tпр)/ M) х 100%, где m(δUпр, Δ tпр) - число провалов напряжения глубиной δUпр и длительностью Δ tпр за время Т ; М - суммарное число провалов напряжения за время Т.

К провалам напряжения, возникающим в большинстве случаев при коротких замыканиях в сети, чувствительны некоторые виды элекгропрнемников (ЭВМ, ), поэтому в проектах электроснабжения таких приемников должны предусматриваться меры по снижению длительности, интенсивности и глубины провалов напряжения. Допустимые значения длительности провалов напряжения ГОСТ не указывает.

Это резкое изменение напряжения, за которым следует восстановление напряжения до обычного уровня за промежуток времени от нескольких микросекунд до 10 миллисекунд. Оно представляет собой максимальное мгновенное значение напряжения импульса U имп (рис. 3).

Рис. 3. Импульсное напряжение

Импульсное напряжение характеризуется амплитудой импульса U" имп, представляющей собой разность между импульсом напряжения и мгновенным значением напряжения основной частоты, соответствующим моменту начала импульса. Длительность импульса t имп - интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до обычного уровня. Может быть вычислена длительность импульса t имп0,5 по уровню 0,5 его амплитуды (см. рис. 3).

Импульсное напряжение определяется в относительных единицах по формуле ΔU имп = U имп/(√2U н)

К импульсам напряжения чувствительны также такие электроприемники, как ЭВМ, силовая электроника и др. Импульсные напряжения появляются вследствие коммутаций в электрической сети. Меры по снижению импульсных напряжений должны предусматриваться при разработке конкретных проектов электроснабжения. Допустимые значения импульсных напряжений ГОСТ не указывает.

Отклонения частоты

Изменения частоты обусловлены изменениями суммарной нагрузки и характеристиками регуляторов частоты вращения турбин. Большие отклонения частоты возникают в результате медленного регулярного изменения нагрузки при недостаточном резерве активной мощности.

Частота напряжения в отличие от других явлений, ухудшающих качество электроэнергии, является общесистемным параметром: все генераторы, присоединенные к одной системе, генерируют электроэнергию на напряжении одинаковой частоты - 50 Гц.

Согласно первому закону Кирхгофа всегда существует строгий баланс между выработкой и генерацией мощности. Поэтому любое изменение мощности нагрузки вызывает изменение частоты, что приводит к изменению выработки активной мощности генераторов, для чего блоки "турбина - генератор" оборудуют устройствами, позволяющими регулировать поступление энергоносителя в турбину в зависимости от изменений частоты в электрической системе.

При определенном росте нагрузки оказывается, что мощность блоков "турбина - генератор" исчерпана. Если нагрузка продолжает увеличиваться, баланс устанавливается при пониженной частоте - возникает отклонение частоты. В этом случае говорят о дефиците активной мощности для поддержания номинальной частоты.

Отклонение частоты Δ f от номинального значения f н определяется по формуле Δ f = f - f н, где f - текущее значение частоты в системе.

Изменения частоты, превышающие 0,2 Гц, существенно влияют на технико-экономические показатели работы электроприемников, поэтому нормально допустимое значение отклонения частоты равно ±0,2 Гц, а максимально допустимое значение отклонений частоты составляет ± 0,4 Гц. В послеаварийных режимах допускается отклонение частота от +0,5 Гц до - 1 Гц в течение не более 90 ч в год.

Отклонение частоты от номинальной приводит к увеличению потерь энергии в сети, а также к снижению производительности технологического оборудования.

Коэффициент амплитудной модуляции напряжения и коэффициент небаланса междуфазных и фазных напряжений

Коэффициент амплитудной модуляции напряжения характеризует колебания напряжения и равен отношению полуразности наибольшей и наименьшей амплитуд модулированного напряжения, взятых за определенный интервал времени, к номинальному или базовому значению напряжения, т. е.

k мод = (U нб - U нм)/(2√2U н),

где U нб и U нм - соответственно наибольшая и наименьшая амплитуды модулированного напряжения.

Коэффициент небаланса междуфазных напряжений k неб.мф характеризует несимметрию междуфазных напряжений и равен отношению размаха небаланса междуфазных напряжений к номинальному значению напряжения:

k неб.мф = ((U нб - U нм)/U н) х 100%

где U нб и U нм - наибольшее и наименьшее действующие значения из трех междуфазных напряжений.

Коэффициент небаланса фазных напряжений k неб.ф характеризует несимметрию фазных напряжений и равен отношению размаха небаланса фазных напряжений к номинальному значению фазного напряжения:

k неб.ф = ((U нб.ф - U нм.ф)/U н.ф) х 100%,

где U нб и U нм - наибольшее и наименьшее действующие значения из трех фазных напряжений, U н.ф - номинальное значение фазного напряжения.