К какой группе органических соединений относится хитин. Хитин и хитозан

Если вы думаете, что саранчу едят только в некоторых странах Африки и на Ближнем Востоке, то вы глубоко заблуждаетесь. На самом деле блюда из насекомых регулярно потребляем и мы с вами. И это очень полезно. Вот уже несколько десятилетий в продукты питания, лекарства, косметику и даже в бинты и хирургические нитки (шовный материал) добавляют хитин и его производные. Первыми начали это делать японцы, за ними экзотическую моду подхватили европейцы и американцы. Теперь к хитину приобщились и мы.

Тот, кто в школе не прогуливал уроки биологии, помнит, что хитин - вещество, из которого сделан панцирь рака. Однако хитин есть не только у раков. Он входит в состав наружного скелета всех членистоногих: ракообразных (крабов, креветок, омаров) и насекомых (жуков, бабочек). Кроме того, хитин содержится в клеточной стенке дрожжей, водорослей и грибов.

От всех болезней

Хитиновые добавки кладут в пищу для улучшения ее внешнего вида, для усиления вкуса и аромата либо в качестве консерванта. Некоторые предпочитают насекомых в виде пищевых добавок.

Польза от подобной диеты:

  • защищает организм от радиоактивного излучения;
  • подавляет рост раковых клеток;
  • предупреждает развитие инфарктов и инсультов (усиливает эффект препаратов, разжижающих кровь);
  • повышает иммунитет ;
  • регулирует уровень холестерина в крови (помогает при атеросклерозе и ожирении);
  • улучшает пищеварение (снижает кислотность желудочного сока, стимулирует рост полезных бифидобактерий);
  • борется с воспалительными процессами;
  • ускоряет процессы регенерации (восстановления) тканей.

В живой природе хитин встречается так часто, что по распространенности занимает почетное второе место среди органических веществ (после целлюлозы). Некоторые ученые даже полагают, что в самом ближайшем будущем человечество полностью перейдет на хитиновую диету. Так профессор химии полимеров из Северной Каролины Сэм Хадсон недавно заявил, что современные исследователи «стоят на пороге прекрасного нового мира, такого же бесконечного, как и количество продуктов, которые можно получить из хитина».

Из истории

А все началось с того, что в далеком 1811 году директор Ботанического сада в Нанси (Франция) профессор Генри Браконно занялся изучением химического состава грибов. Его внимание привлекло странное вещество, которое не смогла растворить серная кислота. Это и был самый настоящий хитин. Вскоре выяснилось, что выделенный французским ученым биополимер имеется не только в грибах, но и в надкрыльях насекомых. И в 1823 году веществу дали официальное название. «Хитин» - от греческого “chiton” - одежда. В 1859 году химики, избавившись от кальция и белков, получили из хитина новое вещество - хитозан - еще более интересное, чем его предшественник. Впрочем, после всех открытий хитином целых 100 лет никто кроме узких спецалистов не интересовался.

О том, как полезен хитин с хитозаном для здоровья, выяснилось только в конце XX века. Однако поедать членистоногих вместе с хитиновым покровом люди начали давным-давно. Еще в Библии в книге Левита упоминаются «чистые» и «нечистые» насекомые, то есть те, которых можно или нельзя есть. Так, например, к «чистым» относят саранчу и кузнечиков. Саранчой и диким медом питался Иоанн Креститель в пустыне. Древнегреческий историк Геродот упоминал об африканцах, которые ловят саранчу, сушат ее на солнце, обливают молоком и съедают. Считается, что даже древние римляне не брезговали саранчой в меду, а жены основателя ислама Мохаммеда посылали в дар супругу целые подносы саранчи.

Вареных муравьев подавали на званых обедах при дворе индейского властителя Монтесумы. Известный зоолог и путешественник Альфред Брем в своей книге «Жизнь животных» описывал, как жители Судана ловят и с удовольствием едят термитов. У многих народов гастрономическая любовь к жучкам-паучкам сохранилась и по сей день. В некоторых странах Африки и на Ближнем Востоке в лавках и на базарах продают саранчу, а блюда из нее входит в меню дорогих ресторанов. На Филиппинах существует множество способов приготовления сверчков. В Таиланде в пищу идут и сверчки, и гусеницы, и стрекозы, и личинки жуков. В Мексике едят клопов-вонючек и кузнечиков.

Хитиновая диета

Любопытно, что диету из насекомых придумали еще в конце XIX века. В 1885 году английский путешественник и естествоиспытатель Винсент Хольт в противовес вегетарианству и мясоедению стал призывать к энтомофагии - питанию насекомыми. Не догадываясь об оздоровляющем действии хитина и хитозана, Хольт тем не менее писал: «Насекомые в качестве источника питательных веществ гораздо полезнее и чище, поскольку они сами питаются исключительно растительной пищей».

Насытиться насекомыми хоть и трудно, но возможно. Главное (хотя бы примерно) подсчитать: сколько кузнечиков, термитов, пчел и навозных жуков нужно поймать, чтобы они в сумме весили 100 граммов.

Сравнительная пищевая ценность в граммах на 100 г продукта:

  • Кузнечики: белков - 20.6; жиров - 6.1
  • Навозные жуки: белков - 17.2; жиров - 3.8
  • Термиты: белков - 14.2; жиров - 2.2
  • Пчелы: белков - 13.4; жиров - 1.4
  • Говядина: белков - 23.5; жиров - 21.2

Энтомофагия - все-таки, экзотика. Сегодня, чтобы испытать на себе целительное действие хитина (хитозана) совсем не обязательно, превозмогая брезгливость жевать тараканов и скарабеев. Можно просто зайти в магазин и купить что-нибудь диетическое.

Хитин в нашей стране

Самый первый лекарственный препарат на основе хитина был создан в 1960-е годы в Советском Союзе. Он должен был защищать человека от ионизирующего излучения. Все исследования нового лекарства были строго засекречены военными, причем его состав скрывали даже от врачей. После серии экспериментов на мышах, собаках и обезьянах было доказано, что препарат помогает животным выжить после смертельной дозы облучения. Чуть позднее ученые выяснили, что хитиновые лекарства помогают и человеку, а также, что их свойства не ограничивается только радиопротекторным эффектом.

Хитин и его производные помогают бороться с раковыми опухолями, аллергиями, гипертонией, заболеваниями кишечника и т.д. Кроме того, хитиновые включения способствую более продолжительному действию остальные лекарства.

Исследования хитина и хитозана продолжаются и сейчас. В России этим занимаются члены, созданного в 2000 году, Российского Хитинового Общества. В его состав вошли не только ученые, занимающиеся исследованием хитина и хитозана, но и специалисты из других областей науки, представители промышленности, медицины, сельского хозяйства. На Западе лучшим хитинологам вручается Браконновская премия, названная в честь первооткрывателя хитина Браконно. В России подобная премия названа в честь энтузиаста исследований хитина - академика Павла Шорыгина.

Хитин – природный аминополисахарид. По распространенности в живой природе занимает второе место после целлюлозы. В организмах членистоногих (крабов, омаров, раков, криля и т.п.), насекомых (пчел, жуков и т.п.), клетках грибов и дрожжей, диатомовых водорослях хитин в комплексе с минеральными веществами, белками и меланинами образует внешний скелет и внутренние опорные структуры. Биосинтез хитина происходит в особых клеточных органеллах (хитосомах) с участием фермента хитинсинтетазы путем последовательного переноса остатковN -ацетил-D -глюкозамина из уридинфосфат-N -ацетил-D -глюкозамина на растущую полимерную цепь.

Получение

Наиболее доступным для промышленного освоения и масштабным источником получения хитина являются панцири промысловых ракообразных. Поскольку хитин не растворим в воде, то не поддается выделению из панциря напрямую. Для его получения необходимо последовательно отделить белковую и минеральную составляющие панциря, т.е. перевести их в растворимое состояние и удалить. Обобщенная схема получения хитина приведена на рис.1.

Рис.1. Этапы процесса получения хитина.

Существует несколько способов извлечения хитина из хитинсодержащего сырья: химический, биотехнологический, электрохимический.

Химический способ выделения хитина из панцирьсодержащего сырья заключается в проведении стадий депротеинирования, деминерализации и депигментации с помощью химических реагентов – кислот, щелочей, перекисей, поверхностно-активных веществ и т.д.

Достоинства химического способа получения хитина: высокая степень депротеинирования и деминерализации полисахарида; относительная доступность недорогих реагентов; сравнительно небольшое время получения готового продукта. Недостатки: экологическая опасность из-за использования концентрированных реагентов и образования больших объемов кислотно-щелочных, солевых и органических стоков; необходимость использования достаточно концентрированных растворов химических реагентов, вызывающих ухудшение качества целевых продуктов, что обусловлено процессами деструкции хитина, гидролиза и химической модификации белка и липидов; использование коррозионно-стойкого оборудования; большой расход воды на технологические нужды и многократные промывки.

Биотехнологический способ заключается в использовании ферментов для удаления остаточного белка и минеральных веществ. Используютсяферменты и ферментные препараты микробиологического и животного происхождения. Достоинства биотехнологических способов депротеинирования и деминерализации хитина: используются "щадящие" условия, что позволяет сохранить в наибольшей степени нативные свойства хитина и белка, получаемые при этом белковые продукты практически не содержат хлорида натрия, присутствие которого неизбежно в случае применения кислотно-щелочных растворов; использование ряда ферментных препаратов делает возможным совмещение нескольких операций, что упрощает процесс; уменьшение, по сравнению с кислотно-щелочным способом, агрессивности реакционной среды, что, в свою очередь, снижает затраты на оборудование и увеличивает срок его службы; возможность осуществления производства хитина в судовых условиях непосредственно вместе вылова сырья.

Однако биометоды не лишены существенных недостатков. Это невысокая степень депротеинирования хитина даже при применении нескольких последовательных обработок в свежеинокулированных ферментах, что связано с присутствием части белка в недоступной для протеолитических ферментов форме. Многостадийность и длительность обработки. Использование дорогостоящих ферментов или штаммов бактерий. Наконец, необходимость обеспечения стерильности производства.

Электрохимический способ является альтернативой химическому и биотехнологическому способам, и позволяет в одном технологическом процессе получать хитин достаточно высокой степени очистки и ценные в пищевом отношении белок и липиды.

Сущность технологии получения хитина заключается в проведении стадий депротеинирования, деминерализации и обесцвечивания панцирьсодержащего сырья в виде водно-солевой суспензии в электролизерах оригинальной конструкции под действием электромагнитного поля, направленного потока ионов и образующихся в результате электролиза воды Н + - и ОН - - ионов и ряда низкомолекулярных продуктов, обусловливающих кислую и щелочную реакцию среды и ее окислительно-восстановительный потенциал соответственно.

К преимуществам электрохимической технологии получения хитина относятся: возможность получения в одном технологическом цикле всех ценных компонентов сырья с максимальным выходом при сохранении их биологических и функциональных свойств за счет щадящих условий обработки; исключение необходимости использования кислот, щелочей и ферментов, и, соответственно, снижение экологических нагрузок на окружающую среду; сокращение расхода пресной воды на промывки; интенсификация процесса; повышение износостойкости оборудования из-за отсутствия агрессивных сред; возможность оперативного изменения производительности и технологической схемы процесса; возможность получения широкого спектра производных хитина.

Основной источник информации:

  • Хитин и хитозан: Получение, свойства и применение / Под ред. К.Г. Скрябина, Г.А. Вихоревой, В.П. Варламова. - М.: Наука, 2002. - 368 с.

1 Место хитина в классификации химических соединений

Хитин (поли-N-ацетил-D-глюкозамин) является широко распространенным в природе биополимером. Полимеры (от греч. polymeros - состоящий из многих частей, многообразный) -это вещества, молекулы которых состоят из большого числа структурно повторяющихся звеньев - мономеров. По происхождению полимеры делят на природные, или биополимеры (напр. натуральный каучук) и синтетические (напр., полиэтилен). Благодаря механической прочности, эластичности, электроизоляционным и другим свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов - пластические массы, резины, волокна, лаки, краски, клеи, ионообменные смолы.

Биополимерами являются многие природные высокомолекулярные соединения из которых построены клетки живых организмов и межклеточное вещество, связывающее их между собой. К биополимерам относятся белки , нуклеиновые кислоты , полисахариды (сложные углеводы) и так называемые смешанные биополимеры , например, липопротеины (комплексы содержащие белки и липиды) и т.д. Хитин - это азотосодержащий полисахарид (аминополисахарид) . Мономерами полисахаридов являются моносахариды (монозы): глюкоза , фруктоза , галактоза др.

В связи с биологической функцией полисахариды делятся на резервные и структурные . Большинство резервных полисахаридов (крахмал, гликоген, инулин) являются важнейшими компонентами пищевых продуктов, выполняя в организме человека функцию источника углерода и энергии. Структурные полисахариды (целлюлоза, гемицеллюлоза) в клеточных стенках растений образуют протяженные цепи, которые, в свою очередь, укладываются в прочные волокна или пластины и служат своего рода каркасом в живом организме. Самый распространенный в мире биополимер это структурный полисахарид растений - целлюлоза. Хитин является вторым после целлюлозы по распространённости структурным полисахаридом . По химическому строению, физико-химическим свойствам и выполняемым функциям хитин близок к целлюлозе. Хитин - это аналог целлюлозы в животном мире.

2 Химическая структура хитина и хитозана

2.1 β-D-глюкоза

Элементарной частицей (мономером) хитина является N-ацетил-β-D-глюкозамин . Термин глюкозамин означает, что мономер хитина является производным глюкозы , а точнее, β-D-глюкозы .

Рассмотрим подробнее, что означает β-D-глюкоза . Xимическая формула глюкозы С6 (Н2 O)6 . Из органической химии хорошо извест, что заданной формуле могут соответствовать разные вещества. Такие вещества , имеющие одинаковую химическую формулу, молекулярную массу, последовательность соединения атомов, но различные свойства называют стереоизомерами. В стереоизомерах различие в свойствах возникает из-за различного расположения атомов в пространстве. В моносахаридах стереоизомеры образуются из-за различной конфигурации гидроксильной группы ОН и атома водорода Н относите атома углерода С. Упрощённо это можно представить размещением ОН и Н справа или слева от С. В молекуле глюкозы имеется 4 таких атома углерода (обведены синим цветом). В биохимии их называют ассиметричными или хиральными. Меняя местами ОН и Н теоретически можно получить 16 стереоизомеров. Наиболее важные изомеры глюкозы: D-глюкоза и L-глюкоза. Не только глюкоза, но и другие моносахариды относятся либо к В- либо к L- изомерам. Отнесение моносахаридов к D- или L- изомерам производится по расположению группы ОН у атома углерода С , дальше всех отстоящего от карбонильной группы С=О (для глюкозы эти группы С=Н и ОН обведены красным цветом).

В природе (фрукты, овощи, мёд и т.д.) встречается только D-глюкоза. L-глюкоза получена синтетически.

Моносахара склонны к образованию циклических структур. Именно циклические молекулы моносахаров соединяясь между собой образуют молекулы полисахаридов. В кристаллическом состоянии моносахариды находятся только в циклической форме. Глюкоза образует циклическую структуру с 5-ю атомами углерода и одним атомом кислорода в кольце. При образовании циклической структуры глюкозы к 4 имеющемся хиральным атомам углерода добавляется ещё один 5-й хиральный атом углерода (обведён чёрным цветом). В линейной структуре это атом углерода входил в карбонильную группу С=О. Это приводит к образованию 2-х стереоизомеров D-глюкозы: α- когда ОН 5-го хирального атома углерода размещается выше плоскости кольца и β- ниже. Этот дополнительный хиральный атом называют аномальным, а α- и β-стереоизомеры D-глюкозы аномерами. По физико-химическим свойствам α- и β-аномеры существенно отличаются друг от друга. Входя в полисахариды в качестве строительных блоков они образуют совершенно разные углеводы (так,α-D-глюкоза образует амилозу; β-D- целлюлозу). В водных растворах α- и β-аномеры легко переходят друг в друга и между ними устанавливается равновесие: 64% β-D-глюкозы и 36% α-D-глюкозы.

2.2 β-D-глюкозамин и N-ацетил-β-D-глюкозамин

По классификации производных моносахаридов глюкозамин относится к аминосахарам. Аминосахара - это производные моносахаридов, гидроксильная группа которых -ОН замещена аминогруппой -NH2 (чаще всего у 2 атома углерода - см. рис.). По номенклатуре ИЮПАК названия аминосахаров образуют прибавлением к названию "исходного" моносахарида названия аминогруппы, замещающей гидроксил (с указанием ее положения), и префикса "дезокси", указывающего на замещение. По этой номенклатуре полное название β-D-глюкозамина: 2-амино-2-дезокси-D-глюкопираноза (D-глюкозамин) . 2-амино ознаяает, что аминогруппа присоединена ко 2-му атому углерода; 2-дезокси означает, что у 2 атома углерода отсутствует гидроксильная группа; окончание пираноза присутствует в моносахаридах циклической структуры. Упрощённое название исходит из корня соответствующего моносахарида, к которому добавляется слово «амин», например глюкозамин. Аминосахара, в отличие от других моносахаридов идут не на получение энергии, а на формирование соединительных тканей организма.

N-ацетил-β-D-глюкозамин - это ацетилированный β-D-глюкозамин. Ацетилирование - это замещение атомов водорода в органических соединениях остатком уксусной кислоты CH3 CO (ацетильной группой). N-ацетил-β-D-глюкозамин - это мономер (элементарная, повторяющаяся структура) хитина, а β-D-глюкозамин - хитозана.

2.3 Хитин и хитозан


Молекула хитина состоит из N-ацетил- β-D-глюкозаминовых звеньев. В живых в природе организмах может образовываться только хитин, а хитозан является производным хитина. Молекула хитозана состоит из β-D-глюкозаминовых звеньев. Хитозан получают из хитина деацетилированием с помощью щелочей. Деацетилирование - это реакция обратная ацетилированию, т.е. замещение атомом водорода ацетильной группы СН3 СО. Поэтому, в отличии от хитина, хитозан может иметь структурную неоднородность обусловленную неполной завершённостью реакции деацетилирования. Содержание остаточных ацетильных групп СН3 СО (на рис. обведена серым) может достигать 30% и характер распределения этих групп может заметно влиять на некоторые физико-химические свойства хитозана. Таким образом, при неполном ацетилировании молекула хитозана состоит из случайно-связанных N-ацетил-β-D-глюкозаминовых звеньев (основные звенья) и β-D-глюкозаминовых звеньев (остаточные звенья) .

Хитин, как и целлюлоза, обладает двумя гидроксильными группами, одна из которых у С-3 вторичная, а вторая у С-6 - первичная. По этим функциональным группам может быть осуществлено получение производных, аналогичным соответствующим производным целлюлозы. Среди них можно отметить простые (например, карбоксиметиловые) и сложные эфиры. Хитозан имеет дополнительную реакционноспособную функциональную группу (аминогруппа NH2 ) , поэтому кроме простых и сложных эфиров на хитозане возможно получение N-производных различного типа. Наличие реакционноспособных функциональных групп в структуре молекул хитина и хитозана обеспечивает возможность получения разнообразных химических модификаций пригодных для использования в различных отраслях промышленности, сельском хозяйстве, медицине и т.п.

Хитин является опорным компонентом:

  • клеточной ткани большинства грибов и некоторых водорослей;
  • наружной оболочки членистоногих (кутикула у насекомых, панцирь у ракообразных) и червей;
  • некоторых органов моллюсков.

В организмах насекомых и ракообразных, клетках грибов и диатомовых водорослей хитин в комплексе с минеральными веществами, белками и меламинами образует внешний скелет и внутренние опорные структуры.

Меланины (от греч. melas, родительный падеж melanos - чёрный), коричневые и чёрные (эумеланины) или жёлтые (феомеланины) высокомолекулярные водонерастворимые пигменты. Широко распространены в растительных и животных организмах; определяют окраску покровов и их производных (волос, перьев, чешуи) у позвоночных, кутикулы у насекомых, кожуры некоторых плодов и т.д.

Потенциальные источники хитина многообразны и широко распространены в природе. Общая репродукция хитина в мировом океане оценивается в 2.3 млрд. т в год, что может обеспечить мировой потенциал производства 150-200 тыс. т хитина в год.

Наиболее доступным для промышленного освоения и масштабным источником получения хитина являются панцири промысловых ракообразных. Возможно также использование гладиуса (скелетной пластинки) кальмаров, сепиона каракатицы, биомассы мицелярных и высших грибов. Одомашненные и поддающиеся разведению насекомые вследствие их быстрого воспроизводства могут обеспечить значительную биомассу, содержащую хитин. К таким насекомым относятся тутовый шелкопряд, медоносные пчелы и комнатные мухи. В России массовым источником хитинсодержащего сырья является камчатский краб и краб-стригун, годовой вылов которых на Дальнем Востоке составляет до 80 тыс. т, а также углохвостая креветка в Баренцевом море.

Известно, что панцири ракообразных - достаточно дорогостоящее сырье, и несмотря на то, что разработано более 15 методов получения из них хитина, был поставлен вопрос о получении хитина и хитозана из других источников, среди которых рассматривались мелкие ракообразные и насекомые.

За счет широкого распространения пчеловодства в нашей стране существует возможность получать хитиновое сырье (подмор пчел) в значительных масштабах. По состоянию на 2004 г. в Российской Федерации во всех категориях хозяйств имеется 3,29 млн пчелиных семей. Сила пчелиной семьи (масса находящихся в пчелиной семье рабочих пчел, измеряемая в кг) равна в среднем 3,5-4 кг. Летом в период активного медосбора и весной после зимовки пчелиная семья обновляется почти на 60-80 %. Таким образом, ежегодная сырьевая база подмора пчел может составить от 6 до 10 тысяч тонн, это дает возможность рассматривать подмор пчел как новый перспективный источник хитозана насекомых наряду с традиционными видами сырья.

Химический состав различных видов хитиносодержащего сырья, % на сухое вещество

Хитин, входящий в состав панциря ракообразных, образует волокнистую структуру. У ракообразных сразу после линьки панцирь мягкий, эластичный, состоящий только из хитин-белкового комплекса, но с течением времени происходит его упрочнение за счет минерализации структуры в основном карбонатом кальция. Таким образом, панцирь ракообразных построен из трех основных элементов - хитина, играющего роль каркаса, минеральной части, придающей панцирю необходимую прочность и белков, делающих его живой тканью. В состав панциря входят также липиды, меланины и другие пигменты.

В кутикуле взрослых насекомых хитин также ковалентно связан с белками типа артраподина и склеротина, а также большим количеством меланиновых соединений, которые могут составлять до 40% массы кутикулы. Кутикула насекомых отличается большой прочностью и в то же время гибкостью благодаря хитину. Преимуществом пчелиного подмора является минимальное содержание минеральных веществ, так как кутикула насекомых практически не минерализована. В связи с этим отпадает необходимость проводить сложную процедуру деминерализации.

Массовые источники ПСС имеются во многих странах, но промышленное производство хитина и хитозана освоено преимущественно в Японии, где суммарно по данным на 1998 г. выпускается до 2500 т хитина и хитозана в год. В США выпускается около 1000 т хитозана и других модификаций хитина в год. Европейские страны (Италия, Норвегия, Польша) выпускают до 100 т хитозана в год. В последние годы развитие промышленного производства хитина и его производных развивается в Индии, Китае и Таиланде. В качестве сырья для получения полимеров, в Японии и Китае используются ПСС от переработки крабов и креветок, а в США - ПСС крабов и омаров. Отечественная промышленность начала осваивать производство хитина и хитозана в 1970-1980 гг. и к настоящему времени общий объем их выпуска достигает 80 т в год. (Апитерапия. / Хисматуллина Н.3. - Пермь: Мобиле, 2005. - 296 с.)

4 Физико-химические свойства и применение хитина и хитoзана

Хитин и его дезацетилированное производное хитозан привлекли внимание широкого круга исследователей и практиков благодаря комплексу химических, физико-химических и биологических свойств и неограниченной воспроизводимой сырьевой базой. Полисахаридная природа этих полимеров обусловливает их сродство к живым организмам, а наличие реакционноспособных функциональных групп (гидроксильные группы, аминогруппа) обеспечивает возможность разнообразных химических модификаций, позволяющих усиливать присущие им свойства или придавать новые в соответствии с предъявляемыми требованиями.

Интерес к хитину и хитозану связан с их уникальными физиологическими и экологическими свойствами такими как биосовместимость, биодеструкция (полное разложение под действием природных микроорганизмов), физиологическая активность при отсутствии токсичности, способность к селективному связыванию тяжелых металлов и органических соединений, способность к волокно- и пленкообразованию и др.

Процесс получения хитина заключается в удалении из сырья последнего минеральных солей, белков, липидов, пигментов поэтому качество хитина и хитозана зависит во многом от способа и степени удаления этих веществ, а также от условий проведения реакции деацетилирования. Требования к свойствам хитина и хитозана определяются областями их практического использования, которые весьма разнообразны. В России, как и в других странах, нет единого стандарта, но существует деление на хитин и хитозан технический, промышленный, пищевой и медицинский.

На сайте компании «Хитин и хитозан» производящей хитин и хитозан в промышленных масштабах перечислены следующие направления их применения:

  • атомная промышленность: для локализации радиоактивности и концентрации радиоактивных отходов;
  • медицина: в качестве шовных материалов, рано- и ожогозаживляющих повязок. В составе мазей, различных лечебных препаратов, как энтеросорбент;
  • сельское хозяйство: для производства удобрений, защиты семенного материала и сельскохозяйственных культур;
  • текстильная промышленность: при шлихтовке и противоусадочной или водоотталкивающей обработке тканей;
  • бумажная и фотографическая промышленность: для производства высококачественных и специальных сортов бумаги, а также для улучшения свойств фотоматериалов;
  • в пищевой промышленности выполняет роль консерванта, осветлителя соков и вин, диетического волокна, эмульгатора;
  • в качестве пищевой добавки показывает уникальные результаты как энтеросорбент;
  • в парфюмерии и косметике входит в состав увлажняющих кремов, лосьонов, гелей, лаков для волос, шампуней;
  • при очистке воды служит как сорбент и флокулянт.

По химической структуре хитин близок к целлюлозе. Как и молекулы целлюлозы, молекулы хитина обладают большой жёсткостью и склонностью к образованию надмолекулярных структур (так называемые фибрилярные структуры). В фибрилярных структурах молекулы хитина, скреплённые водородными связями, располагаясь почти параллельными пучками образуют структуры регулярные в 3-х измерениях, что характерно для кристаллов. Известны несколько типов таких кристаллических образований (α-,β-,γ-хитины), которые различаются степенью упорядоченности и взаимной ориентацией полимерных молекул (полиморфизм).

Одним из важнейших свойств полимеров, определяющих во многих случаях возможность их переработки и применения, является их растворимость. Хитин нерастворим в воде, растворах органических кислот, щелочах, спиртах и других органических растворителях. Он растворим в концентрированных растворах соляной, серной и муравьиной кислот, а также в некоторых солевых растворах при нагревании, но при растворении он заметно деполимеризуется. В смеси диметилацетамида, N-метил-2-пирролидона и хлористого лития хитин растворяется без разрушения полимерной структуры. Низкая растворимость затрудняет переработку и применение хитина.

Получаемый из хитина хитозан растворяется в растворах как органических так и неорганических кислот (кроме серной). В отличие от практически нерастворимого хитина, хитозан, растворимый даже в растворах органических кислот, имеет более широкие возможности для применения в пищевой промышленности, медицине, сельском хозяйстве и других отраслях.

Также важными важными свойствами хитозана являются гигроскопичность, сорбционные свойства, способность к набуханию. Из-за того, что в молекуле хитозана содержится много гидроксильных, аминных и других крайних групп, её гигроскопичность очень велика (2-5 молекул на одно мономерное звено, которое находится в аморфных областях полимеров). По этому показателю хитозан уступает только глицерину и превосходит полиэтиленгликоль и каллериоль (высокополимерный спирт из груши). Хитозан хорошо набухает и прочно удерживает в своей структуре растворитель, а также растворенные и взвешенные в нем вещества. Поэтому в растворенном виде хитозан обладает намного большими сорбционными свойствами, чем в нерастворенном.

Хитозан может подвергаться биологическому разложению под воздействием хитиназы и лизоцима. Хитиназы - это ферменты, каталицирующие разложения хитина. Вырабатываются в организмах животных, содержащих хитин. Лизоцим вырабатывается в организме животных и человека. Лизоцим - фермент, разрушающий стенку бактериальной клетки в результате чего происходит её растворение. Создаёт антибактериальный барьер в местах контакта с внешней средой. Содержится в слюне, слёзах, слизистой оболочке носа. Полностью разлагающиеся под действием природных микроорганизмов изделия из хитозана не загрязняют окружающую среду .

По внешнему виду хитозан представляет собой чешуйки размером менее 10 мм или порошки различной тонины помола, от белого до кремового цвета, часто с желтоватым, сероватым или розоватым оттенком, без запаха. Другими свойствами сухого хитозана являются электризуемость и вяжущий вкус. По токсичности хитозан относится к 4-му классу и считается безопасным.

Хитозан показал себя как эффективный радиопротектор, сорбент токсинов и тяжелых металлов в организме, элемент лечебно-профилактического питания, средство защиты растений, иммуномодулятор в ветеринарии, а также в других областях. На сегодняшний день известно более 70 направлений применения хитозана.

Японские специалисты назвали хитозан веществом ХХI века. По их мнению, уже через два – три десятилетия промышленная цивилизация будет немыслима без него точно также, как без алюминия, полиэтилена или персонального компьютера.

5 Низкомолекулярный хитозан. Апизан

Для расширения сферы применения хитозана в медицине большое значение имеет его растворимость при нейтральных значениях рН, что может быть обеспечено снижением его молекулярной массы. Как показывает практика, молекулярная масса хитозанов, получаемых из панциря ракообразных химическими и ферментативными способами, высока и составляет до 103 кДа. Такие хитозаны растворимы только в водных растворах органических и минеральных кислот, что не всегда удобно. Для получения хитозана, растворимого в нейтральных растворах (при рН = 7), исходный хитозан подвергают гидролизу с помощью химических реагентов или ферментов.

В качестве гидролизующего реагента чаще всего применяется пергидроль в виде 3-10%-ного водного раствора при умеренном нагревании до 30-50 °С . Гидролиз снижает молекулярную массу хитозана и улучшает его растворимость в слабокислых водных растворах. При этом получается полидисперсный по молекулярной массе продукт, растворимый в разбавленных растворах кислот при рН > 5.

В качестве ферментных препаратов для деградации хитина и хитозана применяют комплексы ферментов различного происхождения. Это могут быть ферментные комплексы гепатопанкреаса краба или криля, а также панкреатин из поджелудочной железы крупного рогатого скота. Но чаще для этой цели применяют ферментные комплексы с хитинолитической активностью микробиологического происхождения. Применение ферментных препаратов для деградации хитозана позволяет получать низкомолекулярные хитозаны, растворимые в воде и обладающие при этом на порядок более высокой биологической активностью по сравнению с высокомолекулярными хитозанами. Такие свойства низкомолекулярных хитозанов существенно расширяют сферу их применения в качестве медицинских полимеров. Например, на основе низкомолекулярных хитозанов разработаны эффективные радиопротекторы, хиральные селекторы различных субстанций медицинского назначения, антикоагулянты с высокой гепариновой активностью.

Выделенный из хитинового покрова пчёл хитозан для придания ему водорастворимости также подвергается гидролизу комплексом ферментов микробного происхождения. В результате получается продукт, названный апизаном (пчелозаном). Апизан в конце технологической цепочки его получения, после лиофильной сушки, представляет собой тонкий порошок светло-коричневого цвета, растворимый в кислой среде при рН=5.5, имеет влажность 8-10%, содержание золы 1-2%, степень деацетилирования - 80-85% (Практическая апитерапия. / Хисматуллина Н.3. - Пермь: ЭксЛибрум, 2009. - 336 с. ).

Часто на сайтах о пчелопродуктах можно встретить, например, такое нелепое утверждение о преимуществах пчелозана: "...Низкомолекулярный хитозан, полученный из кутикулы пчёл усваивается полностью, в отличие от высокомолекулярного хитозана полученного из панциря ракообразных, который усваивается частично." Во-первых, в конце технологической цепочки получения и тот и другой хитозаны низкомолекулярные. Во-вторых, и это самое главное, по своей биологической природе хитозан относится к пищевым волокнам, которые не усваиваются совсем или усваиваются очень слабо. Глвное их достоинство - способность проходить через ЖКТ не усваиваясь "механически" его очищая (см. страницу

Тип «Членистоногие» включает в себя классы Ракообразных, Паукообразных и Насекомых. Одним из общих признаков Членистоногих является хитиновый покров всего тела. Такая оболочка надёжно защищает внутренние органы и является основой опорно двигательной системы этих животных: узнать подробнее о составе и функциях хитинового покрова Членистоногих поможет данная статья.

Что такое хитин?

В переводе с греческого языка хитин (хитон) – одежда, оболочка, кожа. Природный азотосодержащий полисахарид хитин - это полимер, в основу которого входит N-ацетил глюкозамин. По своей структуре он похож на целлюлозу. Его физические свойства:

  • твёрдый;
  • бесцветный или полупрозрачный;
  • жёсткий на ощупь;
  • нерастворимый в воде.

Рис. 1. Структура хитина

В природе хитин редко встречается в чистом виде, так как представлен в комплексе с другими полисахаридами. Такие соединения ассоциируют с белками.

Хитин впервые был выделен из внешней оболочки тарантула. Название возникло в 1823 году, когда французский учёный А. Одье исследовал покров насекомых.

Хитин входит в состав клеточных стенок грибов и бактерий. Он является наружным скелетом Членистоногих и других беспозвоночных животных. Именно благодаря ему тело снаружи защищено от механического, химического и другого воздействия окружающей среды.

Данное соединение образуется в теле Кишечнополостных животных, а также разнообразных червях.

Ежегодно на планете в живых организмах образуется и распадается около 10 млрд. тонн хитина.

Из хитина в промышленных условиях получают хитозан. Для этого используют панцири Ракообразных (раков, крабов, криля). Применяют его как добавку в кормах животных, для изготовления продуктов питания, косметики, в медицинских целях и сельском хозяйстве.

Функции хитинового покрова

Экзоскелет Членистоногих выполняет функции:

  • наружного панциря, за которым скрываются внутренние органы;
  • выступает в роли скелета, к которому изнутри крепятся сократительные структуры мышечной системы;
  • придаёт телу форму;
  • не допускает излишнюю потерю влаги из организма животных.

Будучи достаточно плотным соединением, хитиновая оболочка не даёт возможности расти животному. Также толщина покрова неодинакова по всему телу. Например, в спинной части слой твёрже, чем у основания конечностей. Поэтому время от времени Членистоногим приходится менять свой покров. Процесс замены внешней оболочки называется линькой. В этот период, пока новая хитиновая оболочка твердеет, животное быстро растёт, но становится достаточно уязвимым.

Строение хитиновой оболочки

Если рассматривать строение оболочки под микроскопом, то можно обнаружить два слоя клеток:

  • экзокутикулу;
  • эндокутикулу.

Рис. 2. Хитиновая оболочка

У Ракообразных тело покрыто хитином, пропитанным солями кальция. Такое соединение формирует достаточно прочную оболочку, напоминающую броню.

У Насекомых оболочка пропитана белками.

У наземных представителей типа Членистоногих поверх хитинового покрова имеется восковидное вещество, которое предотвращает потерю влаги.

Рис. 3. Хитин под микроскопом

Что мы узнали?

В вышеизложенном тексте мы узнали, что Членистоногие имеют хитиновый покров. Это особое природное соединение, которое имеет плотную структуру и выступает в качестве опорно двигательной системы данного типа животных. Хитин является природным полисахаридом, напоминающим целлюлозу у растений. В его функции входит защита от повреждений и испарения излишней влаги.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 75.

Построенный из остатков N-ацетил--D-глюкозамина с 14-связями между ними (см. ф-лу). Деацетилированные (частично или полностью) полимеры , встречающиеся в природе или получаемые хим. обработкой хитина, носят назв. хитозанов.

Х итин широко распространен в природе, являясь опорным компонентом клеточной стенки большинства грибов и нек-рых водорослей, наружной оболочки членистоногих и червей, нек-рых органов моллюсков.
Аналогия в хим. строении хитина и целлюлозы приводит к близости их физ.-хим. св-в, что позволяет им выполнять сходные ф-ции в живых системах. Как и молекулы целлюлозы , молекулы хитина обладают большой жесткостью и выраженной склонностью к межмол. ассоциации с образованием высокоупорядоченных надмол. структур. Известно неск. типов таких кристаллич. образований ( -хитины), к-рые различаются степенью упорядоченности и взаимной ориентацией отдельных полимерных цепей. Хитин не раств. в воде , и его удается растворить только в присут. агентов, эффективно разрывающих водородные связи (насыщенный водный р-р LiSCN, 5-10%-ный р-р LiCl в ДМСО или N,N-диметилацетамиде).
Биосинтез хитина происходит в особых клеточных органеллах (хитосомах) с участием фермента хитинсинтетазы путем последоват. переноса остатков N-ацетил-D-глюкозамина из уридиндифосфат-N-ацетил-D-глюкозамина на растущую полимерную цепь. Хитозан, наличие к-рого особенно характерно для клеточных стенок нек-рых грибов, образуется путем ферментативного N-деацетилирования хитин а.

В природе хитин находится в комплексе с др. полисахаридами и минер. в-вами и ковалентно связан с белком . Для выделения хитина пользуются его нерастворимостью и большой хим. стойкостью, переводя в р-р сопутствующие компоненты сырья. Так, панцири крабов или омаров, содержащие до 25% хитина, деминерализуют соляной к-той, белки раств. в горячей щелочи , отбеливание хитина проводят Н 2 О 2 . Более мягкие условия выделения заключаются в деминерализации комплексонами и обработке окислителями при нейтральных рН. Получаемый таким способом хитин имеет мол. массу порядка неск. миллионов.
Х итин медленно раств. в конц. НС1 и H 2 SO 4 с деструкцией полимерных цепей. Для прспаративного получения хитоолигосахаридов разработаны условия частичного кислотного гидролиза , сольволиза жидким HF и ферментативного расщепления. При продолжит. нагревании с сильными минер. к-тами образуется D-глюкозамин. При нагр. с сильными щелочами происходит N-деацетилирование с образованием хитозана; практически получаемые образцы хитозанов обычно имеют мол. массу порядка (1-5) х 10 5 и могут различаться остаточным содержанием ацетильных групп.
Х итин является вторым после целлюлозы по распространенности природным биополимером . Его ежегодное образование составляет неск. десятков миллиардов тонн. Наиб. доступными источниками хитина служат отходы промысла морских беспозвоночных и мицелий низших грибов. Практич. использование немодифицированного хитина сдерживается его плохой р-римостью. Хотя волокна и пленки из хитина обладают ценными св-вами, до сих пор отсутствует экономичный и удобный с технол. точки зрения метод их получения. Более перспективен хитозан, к-рый раств. в к-тах с образованием солей , дающих высоковязкие р-ры. Хитозан дает прочные соед. с белками , анионными полисахаридами , образует хелатные комплексы с металлами и т. д., на чем основано его применение для удаления белка из сточных вод в произ-ве пищ. продуктов (мясная, рыбная, молочная пром-сть, сыроделие), создания хелатирующих ионообменников , иммобилизации живых клеток в биотехнологии , при изготовлении мед. препаратов, отделке бумаги и текстильных волокон . Нек-рые N-ацилпроизводные хитозана - хорошие гелеобразователи; при ацилировании хитозана производными дикарооновых к-т получают поперечносшитые гели , удобные для