Колесо рабочее центробежного насоса, как основная деталь устройства. Запасные части для насосов Насос с открытым колесом

По заявке клиента, компания «Электрогидромаш» поставит запасные части к насосам собственного производства: Х, АХ, АХП, АНС 60, АНС 130, С569М, С245 . А так же к насосам различных типов: Д, 1Д, СДВ, СМ, СД, ЦНС, ВК, К, КМ, НКУ, КС, НК, СМ, ЦВК, СЭ, Ш, НМШ, ВВН, и многим другим насосам. В частности, поставляются такие узлы, как ротор в сборе, рабочее колесо, уплотняющее кольцо, вал, втулка защитная, направляющий аппарат, корпус насоса.

Что дает установка новых запчастей:

Запасные части насосов — это не только продление срока службы агрегата , но и существенная экономия денег . Можно привести такой пример: у насоса Д 320/50 с электродвигателем мощностью 75 кВт за 5 лет работы на водопроводе КПД снизился на 10%. Это привело к незначительному спаду подачи (с 320 до 304 м3/ч) и напора (с 50 до 47,5 м). Однако соответствующие потери электроэнергии оказались весьма существенными: за год они составили 65 700 кВт/ч, т. е. 45 990 руб. , что значительно превосходит стоимость нового колеса (4600 руб. )

Фото центробежного насоса

Оборудование, с помощью которого накачивают воду, называется насосным, оно делится на несколько групп: объемные и динамические. В этой статье мы поговорим о динамических насосах, к которым относится центробежный агрегат, и что такое рабочее колесо центробежного насоса.

Итак, что же такое центробежный насос ? Как уже говорилось раньше, это оборудование, с помощью которого накачивается вода.
Как работает конструкция:

  • Это происходит с помощью центробежной силы. Проще говоря, внутри насоса находится вода, которая с помощью лопастей и центробежной силы отбрасывается к стенкам корпуса.
  • После чего вода под действием давления начинает поступать к напорному и всасывающему трубопроводу.

Таким образом, вода непрерывно начинает качаться. Чтобы лучше понять, каким образом это происходит, необходимо разобраться из чего состоит насос.

Для чего используется насос

Каким образом происходит накачивание воды через насос в теории уже понятно, а вот какие его части помогают в этом деле — нет.
Поговорим о том, из каких частей он состоит:

  • Рабочее колесо центробежного насоса.
  • Насосный вал, также важная его часть.
  • Сальники.
  • Подшипники.
  • Корпус.
  • Насосный аппарат.
  • Уплотняющие кольца.

Примечание. Центробежные насосы используются не только для добычи воды, так же ими добывают химические жидкости, поэтому, составные насосов могут различаться в зависимости от способа их применения.

Рабочее колесо

Одна из важнейших деталей насоса это рабочее колесо, так как именно оно создает центробежную силу, вода под действием давления, начинает накачивать.
Итак, давайте подробнее разберем, из чего оно состоит, и как происходит его работа, оно состоит из:

  • Переднего диска.
  • Заднего диска.
  • Лопасти, которые находятся между ними.
  • Когда колесо начинает вращаться, вода, находящаяся внутри лопастей, тоже начинает свое вращение, из-за чего возникает центробежная сила, появляется давление, вода примыкает к периферии и ищет выход наружу.

Так как насосы качают не только воду, но и химические жидкости, поэтому рабочие колеса и корпус центробежного насоса изготавливаются из разнообразных материалов:

  • Так, например, для работы с водой используется бронза или чугун.
  • Для улучшения износостойкость при работе с водой, в которой содержатся механические примеси, можно использовать рабочее колесо сделанного из хромистого чугуна.

А если насос предназначен для работы с химикатами, необходимо использовать стальное рабочее колесо.

Характеристики рабочего колеса

Ниже будет представлена таблица классификаций рабочих колес:

Классификация рабочего колеса центробежного насоса
Кол-во рабочих колес
  • Одноступенчатый насос
Ось
  • Вертикально
  • Горизонтально
Давление
  • Низко, < 0,2 МПа
  • Средне, 0,2 — 0,6 МПа
  • Высоко, > 0,6 МПа
Подвод жидкости
  • односторонний
  • двусторонний
  • открытый
  • закрытый
Способ разъема корпуса
  • горизонтально
  • вертикально
Способ отвода жидкости
  • спиральный
  • лопаточный
Быстроходность
  • тихоходный
  • нормальный
  • быстроходный
Назначение
  • водопровод
  • канализация
  • щелочь
  • нефть
  • другие
Соединение с двигателем
  • приводной
  • муфта
Расположен по отношению к воде
  • поверхностный
  • глубинный
  • погруженный

Причины поломок рабочего колеса

Зачастую основной причиной поломки рабочего колеса является кавитация, то есть — парообразование и образование пузырьков пара в жидкости, которое влечет за собой эрозию металла, так как в пузырьках жидкости имеется химическая агрессивность газа.
Основными причинами возникновения кавитации является:

  • Высокая, более 60 градусов температура
  • Не плотные соединения на всасывающем напоре.
  • Большая протяженность и малый диаметр всасывающего напора.
  • Засорение всасывающего напора.

Совет. Все эти факторы влекут за собой поломку рабочего колеса насоса, поэтому, нужно внимательно следить за соблюдением условий работы вашего оборудования. Ведь не зря для каждого вида техники существуют свои условия эксплуатации, которые созданы для большей износостойкости.

Признаки поломки рабочего колеса

Поломка рабочего колеса центробежного насоса может быть заметна не сразу, однако, есть общие признаки, которые указывают на то, что с вашей техникой что-то не так:

  • Потрескивания при всасывании.
  • Шумы.
  • Вибрация.

Совет. Если вы заметили в работе своего насоса вышесказанные признаки, необходимо прекратить его работу. Так как кавитация уменьшает КПД насоса, его напор и соответственно производительность.

Более того, она влияет не только на работу колеса, но и на другие его детали. При длительном воздействии кавитации, детали становятся шероховатыми, и единственное что им поможет — это ремонт или покупка нового оборудования.

Ремонт рабочего колеса

Если рабочее колесо все же сломалось, или сломался насос, его можно отремонтировать своими руками.

Совет. Но, лучше обратиться в специализированный ремонт, так как для этого необходимы специальные инструменты.

Все же, вот небольшая инструкция, каким образом производится ремонт рабочих колес центробежного насоса самостоятельно.
Разборка:

  • С помощью съемщика полумуфту.
  • До упора разгрузочного диска подают ротор в ту сторону, где производится всасывание.
  • Помечают положение стрелки сдвига оси.
  • Разбирают подшипники.
  • Вынимают вкладыши.
  • С помощью специального съемщика вытаскивают разгрузочный диск.
  • С помощью отжимный винтов поочередно, не допуская задания, снимают рабочее колесо с вала.

Ремонт рабочего колеса:

Для того, чтобы произвести ремонт делается расчет рабочего колеса центробежного насоса.
Сталь:

  • Если колесо стерлось, то сначала его направляют, после чего вытачивают на токарном станке.
  • Если колесо сильно изношено, то его удаляют, а затем приваривают новое.

Чугун:

  • Чугунные колеса, как правило, просто меняют, если можно обойтись заточкой, то необходимые места заливают медью, а потом протачивают.

После того как колесо отремонтировано или заменено, насос собирают обратно:

  • Протирают делать центробежного насоса.
  • Проверяют наличие заусенцев и забоин, если он есть, их устраняют.
  • Рабочее колесо собирают на валу.
  • Возвращают разгрузочный диск.
  • Устанавливают мягкую набивку сальников.
  • Заворачивают гайки.
  • Обкатывают сальник.
  • До упора разгрузочного диска в пятку подают ротор.

Для большего понимания процесса ремонта вы можете посмотреть видео в этой статье.

Цены

Цена на рабочее колесо в разных магазинах своя, все зависит от материала самого насоса. Начальная стоимость 1800 рублей, конечная — 49 т.р. Все зависит от того, какой у вас центробежный косо, для чего вы его используете, и какого он размера, а также, сколько в нем колес.
Поэтому, для того чтобы избежать расходов за ремонт, необходимо внимательно следить за его работой. А также, при возникновении каких-либо признаков, указывающих на его неисправность, не нужно использовать его до того момента, пока он не прекратит работу, его следует отнести специалисту, который заменит или отремонтирует вам те детали, которые подверглись поломке.

Насосы уже давно вошли в нашу жизнь, причем отказ от них не представляется возможным в большинстве отраслей. Существует большое количество разновидностей этих устройств: у каждого свои особенности, конструкция, назначение и возможности.

Наиболее распространенные — центробежные - агрегаты оснащены рабочим колесом, которое является главной деталью, передающей энергию, поступающую от двигателя. Диаметр (внутренний и наружный), форма лопаток, ширина колеса – все эти данные являются расчетными.

Типы и особенности

Большинство насосов осуществляют свою работу с использованием одного или нескольких зубчатых или плоских колес. Передача движения происходит за счет вращения по змеевику или трубе, после чего жидкость выдается в отопительную или водопроводную систему.

Можно выделить такие типы рабочих колес центробежных насосов:

  • Открытые – обладают низкой производительностью: КПД составляет до 40 процентов. Конечно, некоторые землесосные снаряды до сих пор используют такие агрегаты. Ведь они обладают высокой стойкостью к засорению, при этом их легко защитить, используя стальные накладки. Добавляется к этому еще и упрощенный ремонт рабочих колес насосов.
  • Полузакрытые – используются для перекачки или передачи жидкости с низкой кислотностью и содержанием небольшого количества абразива в крупных грунтовых агрегатах. Такие элементы оснащены диском со стороны, противоположной всасыванию.
  • Закрытые – современный и наиболее оптимальный вид насосов. Используется для подачи или перекачки сточных или чистых вод, продуктов нефтепереработки . Особенность такого типа колес в том, что на них может быть разное количество лопаток, находящихся под разными углами. Такие элементы имеют самый высокий КПД, этим и объясняется высокая востребованность. Колеса сложнее защитить от износа и ремонтировать, однако они имеют высокую прочность.

Чтобы было удобнее выбирать и различать, на каждом насосе имеется маркировка, позволяющая правильно подобрать для него рабочее колесо. Во многом тип определяется объемом передаваемых жидкостей, при этом используются и разные двигатели.

Что касается количества рабочих лопаток в колесе, то это число колеблется от двух до пяти, реже используется шесть штук. Иногда на внешней части дисков закрытых колес делаются выступы, которые могут быть радиальными или повторяющими очертания лопаток.

Рабочее колесо насоса зачастую производится цельнолитым. Хотя, например, в Соединенных Штатах этот элемент крупного грунтового агрегата делается сварным из литых составляющих. Иногда рабочие колеса изготавливаются с отъемной ступицей, создаваемой из мягкого материала.

В этом элементе может быть сквозное отверстие для обработки.

Отверстие в ступице для посадки на вал может быть коническим или цилиндрическим. Последний вариант позволяет более точно закреплять положение рабочего колеса. Но при этом поверхности нуждаются в очень тщательной обработке, да и снять колесо при цилиндрической посадке сложнее.

При конической посадке высокая точность обработки не требуется. Важно лишь соблюсти конусность, которая в основном находится в границах от 1:10 до 1:20.

Но есть и недостаток такого подхода в закреплении: отмечается значительное биение колеса, что вызывает повышенный износ, особенно при сальниковом уплотнении. При этом положение колеса относительно улитки в продольном направлении является менее точным – еще один минус.

Хотя, конечно, некоторые конструкции позволяют устранить этот недостаток путем перемещения вала в продольном направлении.

Рабочее колесо водяного насоса соединяется с валом при помощи шпонки призматической формы, изготовленной из углеродистой стали.

Современные землесосы все чаще использует другой вид фиксации рабочего колеса с валом – винтовой. Конечно, есть определенные сложности в создании, однако эксплуатация намного упрощается.

Такое решение применяется в крупных грунтовых насосах серии Гр (отечественного производства), а также в агрегатах американского и голландского происхождения.

На рабочее колесо центробежного насоса действуют большие силы – результат:

  • изменения давления на зону колеса против ступицы;
  • изменения направления потока внутри колеса;
  • разности давлений на задний и передний диски.

Если в ступице есть сквозные отверстия, осевая сила больше всего воздействует на хвостовик вала. Если же отверстия несквозные, сила направлена больше на болты, которые используются для фиксации с кольцом валом.

  • Вихревые и центробежно-вихревые насосы. Колесо центробежного насоса – диск с радиально расположенными лопатками, число которых находится в пределах 48-50 штук, имеющий высверленные отверстия. Рабочего колесо может изменять направление вращения, однако при этом требуется изменение назначения патрубков.
  • Лабиринтные насосы. По принципу действия такие агрегаты схожи с вихревыми. В этом случае рабочее колесо изготавливается в виде цилиндра. На внутренней и внешней поверхности имеются винтовые каналы противоположного направления. Между гильзой корпуса и колесом есть зазор в размере 0,3-0,4 мм. Когда колесо вращается, с гребня канала образуются вихри.

Обточка колеса

Обточка рабочего колеса центробежного насоса позволяет уменьшить диаметр для снижения напора, при этом эффективность гидравлики насоса не ухудшается. При малом снижении КПД довольно существенно увеличивается подача и напор.

Обточка применяется тогда, когда характеристика насоса не отвечает текущим условиям функционирования в определенных пределах, при этом параметры системы остаются неизменными, а выбрать агрегат по каталогу не удается.

Количество обточек, которые создаются производителем, не превышает двух.

Размер обточки находится в диапазоне 8-15% от диаметра колеса. И только в крайних случаях этот показатель может быть увеличен до двадцати.

В турбинных насосах обтачиваются лопатки, а в спиральных – еще и диски колеса. Данные производительности, напора, мощности и коэффициента быстроходности при процедуре определяются так:

  • G 2 = G 1 D 2 /D 1 ;
  • H 2 = H 1 (D 2 /D 1) 2 ;
  • N 2 = N 1 (D 2 /D 1) 3 ;
  • n s2 = n s1 D 1 /D 2 ,

где индексами обозначены данные до (1) и после (2) обточки.

При этом происходят такие изменения в зависимости от изменения коэффициента быстроходности колеса: 60-120; 120-200; 200-300:

  • снижение КПД на каждые десять процентов обточки: 1-1,5; 1,5-2, 2-2,5 процентов;
  • уменьшение нормального диаметра колеса: 15-20; 11-15; 7-11 процентов.

Расчет колеса центробежного насоса позволяет определить коэффициент быстроходности по формуле:

  1. (√Q 0 / i) / (H 0 / j)¾.
  2. n s = 3.65 n * (результат первого пункта).

где j – число ступеней; i – коэффициент, зависящий от вида рабочего колеса (с двухсторонним входом жидкости – 2, с односторонним входом жидкости — 1); H 0 – оптимальный напор, м; Q 0 – оптимальная подача, м 3 /с; n – частота вращения вала, об/мин.

Расчет рабочего колеса центробежного насоса выполнять самостоятельно не рекомендуется — работа это ответственная и требует внимания специалистов.

Ремонт и замена

При некачественно изготовленном элементе создается неравномерная нагрузка, что провоцирует нарушение равновесия проточных частей. А это, в свою очередь, приводит к дисбалансу ротора. Если возникла подобная проблема, необходима замена рабочего колеса.

Эта процедура включает такие действия:

  1. Разборка насосной части.
  2. Выпрессовка, замена колеса или нескольких колес (в зависимости от конструкции).
  3. Проверка остальных элементов насоса.
  4. Сборка агрегата.
  5. Тестирование характеристик устройства при нагрузке.

Процедура ремонта элемента может стоить от 2000 рублей. Купить рабочее колесо центробежного насоса можно от 500 рублей — само собой, за самый небольшой вариант.

Устройство в работе (видео)

Изобретение относится к области центробежных насосов. Рабочее колесо центробежного насоса содержит, по меньшей мере, две лопасти с различным углом входа β л1 . Все лопасти рабочего колеса расположены с постоянным внешним шагом α и имеют одинаковый угол выхода β л2 . В частном случае каждой лопасти соответствует лопасть с таким же углом входа β л1 , расположенная симметрично относительно центра рабочего колеса. Рабочее колесо может включать три пары лопастей с различными углами входа β л1 . Достигается прирост КПД насоса в области значений подачи, отличных от расчетного значения. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области центробежных насосов, в частности, к конструированию их рабочих колес, и может быть использовано для повышения эффективности работы насосов в системах теплоснабжения и водоснабжения.

Лопастная система рабочих колес насосов профилируется для расчетного значения подачи насоса исходя из условия снижения гидравлических потерь. Минимизация гидравлических потерь позволяет обеспечить максимальный КПД насоса в оптимальном режиме его работы, соответствующем расчетному значению подачи.

Основные закономерности для профилирования лопастной системы рабочего колеса центробежного насоса изложены в издании: М.Д. АЙЗЕНШТЕЙН Центробежные насосы для нефтяной промышленности. - М.: Государственное научно-техническое издательство нефтяной и горно-топливной литературы, 1957. Однако рабочее колесо, спроектированное в соответствии с указанным источником, будет обеспечивать минимальные гидравлические потери, т.е. высокое значение КПД насоса, только в узкой области вблизи расчетных значений подачи насоса.

Методика построения лопастной системы центробежного насоса получила развитие в работе: А.Н. МАШИН. Профилирование проточной части рабочих колес центробежных насосов. - М.: Московский Ордена Ленина Энергетический Институт, 1976. В данной публикации детально раскрыта методика расчета всех параметров лопастной системы, при этом насос, оснащенный таким рабочем колесом, также показывает высокую эффективность только при работе в оптимальном режиме или вблизи него.

Таким образом, известные из уровня техники рабочие колеса не позволяют эффективно использовать насос при значениях подачи, значительно отличающихся от расчетных.

Однако в реальных условиях, в частности в системах теплоснабжения и водоснабжения, значительную часть времени насос эксплуатируется в режиме, отличном от оптимального, например при значении подачи меньше расчетного. В таких условиях КПД насоса существенно снижается. Следует отметить, что производитель устанавливает расчетное значение подачи ближе к максимальному ее значению, поскольку насос должен обеспечить устойчивую работу во всем заявленном диапазоне подачи. Следовательно, оптимальный режим работы насоса не всегда соответствует режиму эксплуатации, а средневзвешенный по времени КПД насоса может оказаться значительно ниже расчетного.

Задачей изобретения является повышение КПД насоса в области значений подачи насоса, отличающихся от расчетного значения подачи.

Для решения этой задачи предлагается рабочее колесо центробежного насоса, которое содержит, по меньшей мере, две лопасти, имеющие различные углы входа. Все лопасти при этом могут иметь одинаковый угол выхода. Все лопасти могут располагаться с постоянным внешним шагом. Каждой лопасти может соответствовать лопасть с таким же углом входа, расположенная симметрично относительно центра рабочего колеса, при этом указанные лопасти образуют пару. Рабочее колесо может включать три пары лопастей с различными углами входа.

При использовании изобретения достигаются следующие технические результаты:

Повышение КПД насоса в области значений подачи насоса, отличающихся от расчетного значения подачи насоса;

Повышение средневзвешенного по времени КПД насоса.

Описание осуществления изобретения поясняется ссылками на фигуры:

фиг.1 - исходное рабочее колесо;

фиг.2 - модернизированное рабочее колесо;

фиг.3 - зависимость КПД насоса от подачи для исходного и модернизированного колес.

Лопасти рабочего колеса, изображенного на фиг.1, имеют рабочую поверхность, представленную на чертеже линией L, которая обозначается в дальнейшем как внешняя линия лопасти. Входные кромки лопастей 1 лежат на окружности входа, имеющий диаметр D1. Выходные кромки лопастей 2 лежат на окружности выхода с диаметром D2, как правило, совпадающим с внешним диаметром рабочего колеса. Угол между выходными кромками лопастей α, в дальнейшем - внешний шаг, одинаков для всех лопастей.

Касательная к внешней линии лопасти в точке ее пересечения с окружностью входа и касательная к окружности входа в указанной точке образуют угол входа β 1л. Касательная к внешней линии лопасти в точке ее пересечения с окружностью выхода и касательная к окружности выхода в указанной точке образуют угол выхода β 2л.

Значения параметров D1, D2, β 1л и β 2л определены для расчетной подачи насоса при условии максимизации КПД насоса, а также с учетом конструкторских ограничений, и одинаковы для всех лопастей. Поскольку, как показано в приведенной выше работе А.Н. Машина, сопряжение углов входа и выхода может быть осуществлено плавной кривой произвольной формы, то можно считать, что указанные параметры определяют форму и расположение лопастей рабочего колеса. Все лопасти такого рабочего колеса, в дальнейшем - исходные лопасти, одинаковы.

Лопасти рабочего колеса, спроектированного для другого значения подачи насоса, будут иметь иные углы входа и выхода, причем для более низкого значения подачи углы входа и выхода уменьшаются, а для более высокого значения подачи - соответственно увеличиваются.

Исследования показали, что при замене части исходных лопастей лопастями, имеющими другой угол входа, КПД насоса возрастает в области подачи, для которой спроектированы добавленные лопасти. При этом угол выхода заменяющих лопастей целесообразно сохранить равным углу выхода исходных лопастей. Диаметры окружностей входа и выхода, устанавливаемые с учетом конструкторских ограничений, для заменяющих лопастей также сохраняются равными соответствующим значениям этих параметров, определенных для исходных лопастей. Внешний шаг остается постоянным для всех лопастей, и его значение не изменяется.

При осуществлении такой модернизации рабочего колеса КПД насоса на оптимальном режиме работы, для которого разработаны исходные лопасти, ожидаемо снижается. Однако прирост КПД насоса в области низких значений подачи превышает его падение в области оптимального режима, что позволяет получить более высокий средневзвешенный по времени работы КПД насоса.

На фиг.2 представлено модернизированное рабочее колесо, имеющее три пары лопастей. Каждая пара образуется лопастями, расположенными симметрично относительно центра рабочего колеса, при этом лопасти каждой пары имеют одинаковый угол входа, в то время как углы входа лопастей, входящих в разные пары, различны. Такое колесо показывает наилучшие результаты, однако является частным случаем изобретения.

На фиг.3 представлена зависимость КПД насоса от режима его работы для исходного и модернизированного колеса. Повышение КПД насоса в области низкой подачи до 4,5% при применении модернизированного колеса сопровождается незначительным его снижением на оптимальном режиме, что подтверждает достижение заявленного технического результата.

1. Рабочее колесо центробежного насоса, отличающееся тем, что содержит, по меньшей мере, две лопасти, имеющие различный угол входа.

2. Рабочее колесо по п.1, отличающееся тем, что все лопасти имеют одинаковый угол выхода.

3. Рабочее колесо по п.1, отличающееся тем, что все лопасти расположены с постоянным внешним шагом.

4. Рабочее колесо по п.1, отличающееся тем, что каждой лопасти соответствует лопасть с таким же углом входа, расположенная симметрично относительно центра рабочего колеса, при этом указанные лопасти образуют пару.

5. Рабочее колесо по п.4, отличающееся тем, что включает три пары лопастей с различными углами входа.

Похожие патенты:

Изобретение относится к центробежному насосу, содержащему множество каналов, по меньшей мере один элемент которых имеет один или более неосесимметричных контуров каналов, образованных по меньшей мере частично лопастями или лопатками неравной высоты, и способы изготовления и применения таких насосов для перекачивания текучих сред, например в и из буровых скважин (стволов скважин), хотя изобретение применимо к насосам, сконструированным для любого предполагаемого использования, включая, но не ограничиваясь так называемыми работами по транспортировке текучих сред на поверхность.

Изобретение относится к гидромашиностроению, преимущественно к нефтяной промышленности, и может быть использовано при добыче из скважин пластовой жидкости, воды и других жидких сред с широким диапазоном изменения механических примесей

Изобретение относится к насосостроению, в частности к насосам центробежного типа с рабочим осерадиальным колесом тоннельного тина с односторонним осевым входом. Центробежный насос содержит корпус с входным патрубком, переходящим в центральную часть корпуса. Центральная часть корпуса переходит в напорный патрубок. В центральной части корпуса установлено рабочее колесо тоннельного типа. На переднем кольцеобразном диске колеса выполнены кольцевые каналы. На внутренней стенке центральной части корпуса перед входом в напорный патрубок выполнена ступенька. На внутренней стороне крышки корпуса, установленной со стороны входного патрубка, выполнены кольцевые буртики. Изобретение направлено на увеличение КПД и максимально допустимой скорости вращения и уменьшение лобового сопротивления вращению и уровня шума. 3 ил.

Изобретение относится к насосостроению, а именно к химическим горизонтальным центробежным электронасосным агрегатам. Способ производства агрегата заключается в том, что изготавливают сборный корпус насоса, ротор с валом и рабочим колесом, а также силовой узел. Корпус ходовой части насоса оснащают подшипниковыми опорами. Корпус проточной части насоса выполняют с проточной полостью, достаточной для размещения в ней рабочего колеса и спирального сборника. Рабочее колесо выполняют в виде многозаходной крыльчатки закрытого типа с основным и покрывным дисками. За основным диском располагают гидрозатвор в виде автономного диска с импеллером и обрамляющий его по контуру кольцевой съемный элемент. Радиус импеллера гидрозатвора меньше радиуса колеса. Основной диск колеса снабжают кольцевым гребнем. Гребень образует со стенкой ступицы колеса кольцевой канал, сообщенный с гидрозатвором и посредством сквозного отверстия в основном диске напроток с объемом колеса. Осуществляют сборку насоса и монтаж на опорной платформе насоса и привода с помощью силовых полумуфт. После сборки электронасосного агрегата выполняют испытания. Группа изобретений направлена на повышение ресурса, долговечности, надежности работы, защиты от протечек перекачиваемых сред и ядовитых испарений в атмосферу при пониженной трудо-, материало- и энергоемкости производства. 4 н. и 21 з.п. ф-лы, 7 ил.

Изобретение относится к насосостроению, а именно к электронасосным агрегатам, предназначенным для перекачивания химически агрессивных жидкостей. Агрегат содержит электродвигатель, центробежный насос и силовую муфту. Насос выполнен одноступенчатым, консольного типа, содержит корпус с корпусами ходовой и проточной частей. Корпус проточной части включает объединенный с напорным патрубком корпус сборника с кольцевым уступообразным гребнем, тыльную стенку из сопряженных кольцевого гребня корпуса сборника и уступообразного кольцевого элемента тыльной стенки, а также съемную заходную крышку с подводящим осевым патрубком. Корпус ходовой части снабжен картером и подшипниковыми опорами. Рабочее колесо открытого типа выполнено в виде многозаходной крыльчатки, включающей снабженный системой лопаток основной диск со ступицей и по контуру кольцевым гребнем. Гребень выполнен с внешним радиусом, конгруэнтным ответному внутреннему радиусу кольцевого уступообразного гребня. Диск наделен системой лучевидных лопаток, образующих импеллер. Насос имеет гидрозатвор в виде установленного на валу дополнительного автономного диска, снабженного импеллером с системой лучевидных лопаток. Радиус импеллера выполнен меньше радиуса рабочего колеса. Изобретение направлено на повышение защиты от протечек, долговечности и надежности работы агрегата, снижение загрязнения воздуха ядовитыми испарениями. 12 з.п. ф-лы, 5 ил.

Изобретение относится к насосостроению, а именно к конструкциям пульповых центробежных насосов вертикального типа. Насос содержит корпус, ротор с валом и рабочее колесо открытого типа. Рабочее колесо содержит основной диск с системой криволинейных лопаток, разделенных межлопаточными каналами. Внутренняя поверхность проточной полости корпуса насоса и поверхности рабочего колеса покрыты защитным слоем полимерного износостойкого материала. Диск и лопатки рабочего колеса выполнены комбинированной конструкции, состоящей из формообразующего, преимущественно, пластинчатого силового каркаса и указанного защитного слоя. Защитный слой нанесен с двух сторон на упомянутые элементы каркаса с возможностью взаимной попарной самоанкеровки оппозитных участков каркаса и лопаток. Каркас диска и лопатки снабжены перфорацией с определенным отношением суммарных площадей поперечного сечения перфорации и заполняющих ее полимерных перемычек, взаимно анкерующих защитные слои, к неперфорированной площади каркаса. Диаметром силовой каркас диска принят менее проектного диаметра рабочего колеса минимум на две исходные контурные толщины защитного слоя. Высота каркаса лопаток принята менее проектной высоты лопатки на исходную контурную толщину защитного слоя. Изобретение направлено на повышение ресурса, надежности работы пульпового насоса, эффективности перекачивания абразивных жидких сред. 11 з.п. ф-лы, 2 ил.

Изобретение относится к нефтяному машиностроению и может быть использовано в многоступенчатых центробежных погружных насосах для откачки пластовой жидкости с высоким содержанием газа. Диспергирующая ступень погружного многоступенчатого центробежного насоса содержит направляющий аппарат. Последний включает нижний и верхний диск с лопатками, полуоткрытое рабочее колесо, которое содержит ведущий диск с лопастями. В ведущем диске рабочего колеса изготовлена сквозная кольцевая проточка. Ширина проточки составляет от двух до десяти процентов максимального наружного диаметра лопастей. В каждой лопасти ведущего диска изготовлен кольцевой паз. Диаметр нижнего диска направляющего аппарата составляет не более восьмидесяти пяти процентов от наружного диаметра лопаток. На входе в направляющий аппарат в каждой лопатке изготовлен, по крайней мере, один кольцевой вырез. Изобретение направлено на улучшение диспергирующих свойств ступени и повышение надежности ее работы. 6 з.п. ф-лы, 7 ил.

Изобретение относится к области центробежных насосов

К основным узлам и деталям центробежных насосов относятся рабочее колесо, направляющий аппарат, корпус насоса, вал, подшипники и сальники.
Рабочее колесо —. важнейшая деталь насоса. Оно предназначено для передачи энергии от вращающегося вала насоса жидкости. Различают рабочие колеса с односторонним и двусторонним входом воды, закрытые, полуоткрытые, осевого типа.

Закрытое рабочее колесо с односторонним входом воды (рис. 2.2, а) состоит из двух дисков: переднего (наружного) и заднего (внутреннего), между которыми расположены лопасти. Диск 3 с помощью втулки закреплен на валу насоса. Обычно рабочее колесо отливается целиком (диски и лопасти) из чугуна, бронзы или других металлов. Но в некоторых насосах применяют сборные конструкции рабочих колес, в которых лопасти вварены или вклепаны между двумя дисками.

Полуоткрытое рабочее колесо (см. рис. 2.2, о) отличается тем, что у него отсутствует передний диск, а лопасти примыкают (с некоторым зазором) к неподвижному диску, закрепленному в корпусе насоса. Полуоткрытые колеса применяют в насосах, предназначенных для перекачивания суспензий и сильно загрязненных жидкостей (например, илов или осадка), а также в некоторых конструкциях скважинных насосов.
Рабочее колесо с двусторонним входом жидкости (см. рис. 2.2, в) имеет два наружных диска и один внутренний диск с втулкой для крепления на валу. Конструкция колеса обеспечивает впуск жидкости с двух сторон, вследствие чего создается более устойчивая работа насоса и компенсируется осевое давление .
Колеса центробежных насосов обычно имеют шесть — восемь лопастей. В насосах, предназначенных для перекачивания загрязненных жидкостей (например канализационных), устанавливают рабочие колеса с минимальным числом лопастей (2—4).
Рабочее колесо насосов осевого типа (см. рис. 2.2, д) представляет собой втулку, на которой закреплены лопасти крыловидного профиля.
На рис. 2.2, г показана схема рабочего колеса с импеллерами, которые служат для разгрузки осевого усилия или защиты уплотнений от попадания твердых частиц.
Очертания и размеры внутренней (проточной) части колеса определяются гидродинамическим расчетом. Форма и конструктивные размеры колеса должны обеспечивать его необходимую механическую прочность, а также удобство отливки и дальнейшей механической обработки.
Материал для рабочих колес выбирают с учетом его коррозионной стойкости к воздействию перекачиваемой жидкости. В большинстве случаев рабочие колеса насосов изготовляют из чугуна. Колеса крупных насосов, выдерживающие большие механические нагрузки, изготовляют из стали. В тех случаях, когда эти насосы предназначены для перекачки неагрессивной жидкости, для изготовления колес используется углеродистая сталь. В насосах, предназначенных для перекачивания жидкостей с большим содержанием абразивных веществ (пульп, шламов и т. п.), применяются рабочие колеса из марганцовистой стали повышенной твердости. Кроме того, в целях повышения долговечности рабочие колеса таких насосов иногда снабжают сменными защитными дисками из абразивно-стойких материалов.
Рабочие колеса насосов, предназначенных для перекачивания агрессивных жидкостей, изготовляют из бронзы, кислотоупорных чугунов, нержавеющей стали, керамики и различных пластмасс.
Корпус насоса объединяет узлы и детали, служащие для подвода жидкости к рабочему колесу и отвода ее в напорный трубопровод. На корпусе монтируют подшипники, сальники и другие детали насоса.

Корпус насосов может быть с торцевым или осевым разъемом. В насосах с торцевым разъемом корпуса (рис. 2.3) плоскость разъема перпендикулярна оси насоса, а в насосах с осевым разъемом "(рис. 2.4) она проходит через ось насоса.
Корпус насоса включает в себя подводящее и отводящее устройства.
Подвооящее устройство (подвод) — участок проточной полости насоса от входного патрубка до входа в рабочее колесо — предназначено для обеспечения подвода жидкости во всасывающую область насоса с наименьшими гидравлическими потерями, а также для равномерного распределения скоростей жидкости по живому сечению всасывающего отверстия.
Конструктивно насоси изготовляют с осевым (рис. 2.5, а), боковым в виде колена (рис. 2.5, б), боковым кольцевым (рис. 2.5, в) и боковым полуспиральным (рис. 2.5, г) входом.
Осевой вход характеризуется наименьшими гидравлическими потерями, однако при изготовлении насосов с таким входом увеличиваются размеры насосов в осевом направлении, что не всегда удобно конструктивно. Боковой кольцевой вход создает наибольшие гидравлические потери, но обеспечивает компактность насоса и удобное взаимное расположение всасывающего и напорного патрубков.

В насосах с двусторонним входом рабочие колеса разгружены от осевого давления, возникающего при работе насоса. В этих насосах применяют, как правило, боковой полуспиральный вход, который обеспечивает равномерное поступление жидкости в рабочее колесо.
Отводящее устройство (отвод) — это участок, предназначенный для отвода жидкости от рабочего колеса в напорный патрубок насоса. Жидкость выходит из рабочего колеса с большой скоростью. При этом поток обладает высокой кинетической энергией, а движение жидкости сопровождается большими гидравлическими потерями. Для уменьшения скорости движения жидкости, выходящей из рабочего колеса, преобразования кинетической энергии в потенциальную (увеличения давления) и уменьшения гидравлических сопротивлений применяют отводящие устройства, а также направляющие аппараты.


Рис. 2.6. Схемы отводов центробежных насосов

Различают спиральный, полуспиральный, двухзавитковый и кольцевой отводы, а также отводы с направляющими аппаратами.
Спиральный отвод — это канал в корпусе насоса, охватывающий рабочее колесо по окружности (рис. 2.6, а). Поперечное сечение этого канала увеличивается соответственно расходу жидкости, поступающей в него из рабочего колеса, а средняя скорость движения жидкости в нем уменьшается по мере приближения к выходу или остается примерно постоянной. Спиральный канал оканчивается выходным диффузором, в котором происходит дальнейшее уменьшение скорости и преобразование кинетической энергии жидкости в потенциальную.
Кольцевой отвод — это канал постоянного сечения, который охватывает рабочее колесо так же, как и спиральный отвод (см.рис. 2.6,6). Кольцевой отвод применяют обычно в насосах, предназначенных для перекачивания загрязненных жидкостей. Гидравлические потери в кольцевых отводах значительно больше, чем в спиральных.
Полуспиральный отвод — это кольцевой канал, переходящий в спиральный расширяющийся отвод.
Направляющий аппарат (см. рис. 2.6, в) представляет собой два кольцевых диска, между которыми размещены направляющие лопасти, изогнутые в сторону, противоположную направлению изгиба лопастей рабочего колеса. Направляющие аппараты — более сложные устройства, чем спиральные отводы, гидравлические потери в них больше и потому их применяют только в некоторых конструкциях многоступенчатых насосов.
В крупных насосах иногда применяются составные отводы (см. рис. 2.6, г), представляющие собой сочетание направляющего аппарата и спирального отвода.
Вал насоса служит для передачи рабочему колесу вращения от двигателя насоса. Колеса закрепляют на валу с помощью шпонок и установочных гаек. Для изготовления валов чаще всего применяют кованые стали.
Подшипники, в которых вращается вал насоса, бывают шариковыми и скользящего трения с вкладышами. Шариковые подшипники применяют, как правило, в горизонтальных насосах. В некоторых конструкциях подшипников крупных насосов предусматриваются устройства для охлаждения и принудительной циркуляции масла. По расположению подшипниковых опор различают насоси с выносными опорами, изолированными от перекачиваемой жидкости, и насосы с внутренними опорами, в которых подшипники соприкасаются с перекачиваемой жидкостью.
Сальники служат для уплотнения отверстий в корпусе насоса, через которые проходит вал. Сальник, расположенный со стороны нагнетания, должен предотвращать утечку воды из насоса, а сальник, расположенный со стороны всасывания, — предупреждать поступление воздуха в насос.