Кислородная емкость крови физиология. Транспорт кислорода кровью

Кривая диссоциации оксигемоглобина

Кривая диссоциации оксигемоглобина - это график, отображающий зависимость от напряжения кислорода в крови, скорости реакций связывания (ассоциации, стрелка вправо) кислорода гемоглобином в лёгких и высвобождения (диссоциации, стрелка влево) кислорода оксигемоглобином в тканях.

Реакции связывания кислорода гемоглобином в лёгких и высвобождения кислорода оксигемоглобином в тканях:

· Hb4 + O2 ↔ Hb4O2 (1).

· Hb4O2 + O2 ↔ Hb4O4 (2).

· Hb4O4 + O2 ↔ Hb4O6 (3).

· Hb4O6 + O2 ↔ Hb4O8 (4).

осуществляются в прямом и обратном направлении в соответствии с законом действия масс: отношение междуколичеством гемоглобина и оксигемоглобина зависит от концентрации кислорода, растворенного в крови. В свою очередь, концентрация кислорода, растворённого в крови, согласно закону Генри- Дальтона, пропорциональна напряжению кислорода в крови. Показателем скорости реакции связывания (или высвобождения) кислорода гемоглобином может быть степень насыщения гемоглобина кислородом. Значение этого показателя вычисляется как отношение количества оксидированного гемоглобина (оксигемоглобин) к количеству всего гемоглобина, как оксидированного, так и восстановленного (дезоксигемоглобин):

SO2 = [ HbO2 ] / {[ Hb ] + [ HbO2 ]},

где HbO2 - оксигемоглобин. Если гемоглобин полностью дезоксигенирован, то SO2 = 0%; если же весь гемоглобин превратился в оксигемоглобин, то SO2 = 100%.

В соответствии с предшествующими рассуждениями, насыщение гемоглобина кислородом зависит от напряжения кислорода. График этой зависимости, кривая диссоциации оксигемоглобина представлен на схеме.

Эта кривая имеет S -образную форму. Простейшим её параметром может служить значение независимой переменной (проекция точки кривой на ось абсцисс), характеризующая её положение. Эта точку обозначили как напряжение полунасыщения гемоглобина кислородом, PO2(50). Это такое напряжение кислорода в крови, при котором насыщение гемоглобина кислородом, SO2 составляет 50%. В норме (при pH =7,4 и t = 37оC) PO2(50) артериальной кровисоставляет около 26 мм рт ст (3,46 кПа).

Угол наклона кривой графика по отношению к оси абсцисс (первая производная) характеризует скорость реакции.

Из графика видно, что при высоких значениях напряжения кислорода в крови (правая треть графика) угол наклона минимален. На этом участке графика, соответствующем напряжению кислорода в артериальной крови, при значительных изменениях напряжения кислорода (~60 ÷ 100 мм рт ст) степень насыщения гемоглобина кислородом велика (>90%) и мало изменяется (~90 ÷ 97%).

В левом участке графика, соответствующем напряжению кислорода в крови капилляров микрогемациркуляторного русла тканей, скорость реакции диссоциации максимальна (максимальное значение угла наклона). Это способствует отдаче кислорода тканям. Даже при небольших изменениях напряжения кислорода гемоглобин высвобождает значительные количества кислорода и степень насыщения гемоглобина кислородом значительно уменьшается. При этом кислород немедленно используется в метаболизме тканей.

Скорость реакций связывания и высвобождения (ассоциации и диссоциации) кислорода гемоглобином и форма соответствующего графика зависит от ряда факторов. Важнейшими среди этих зависимостей являются: зависимость реакций связывания и высвобождения кислорода гемоглобином от температуры,зависимость реакций связывания и высвобождения кислорода гемоглобином от напряжения двуокиси углерода, зависимость реакций связывания и высвобождения кислорода гемоглобином от pH, зависимость реакций связывания и высвобождения кислорода гемоглобином от 2,3-ДФГ.

Кислородная емкость крови - количество кислорода, которое может быть связано кровью при её полном насыщении; выражается вобъёмных процентах (% об.); зависит от концентрации в крови гемоглобина. Определение Кислородной емкости крови важно для характеристики дыхательной функции крови. Кислородная емкость крови человека - около 18-20 % об.

Кислородная емкость крови - максимальное количество кислорода, которое может быть связано кровью. В среднем 1 г гемоглобина связывает около 1,35 см3 кислорода. Поэтому кислородная емкость крови зависит не от функции внешнего дыхания, а от содержания гемоглобина. Содержание кислорода в крови также зависит не только от эффективности вентиляции, диффузии и газообмена в легких, но и от содержания гемоглобина в крови.

Транспорт кислорода кровью

Кислород, поступающий в кровь, сначала растворяется в плазме крови. При РАО, 100 мм рт. ст. в 100 мл плазмы растворяется 0,3 мл 02.
Кислород, растворился в плазме крови, по градиенту концентрации проходит через мембрану эритроцита и образует оксигемоглобин (НЬ02). При этом валентность железа не изменяется. Оксигемоглобин - неустойчивая соединение и легко разлагается. Прямая реакция называется оксигенацией, а обратный процесс - дезоксигенациею гемоглобина. При сочетании 02 с гемоглобином Fe2 + остается двухвалентным.
Каждая молекула НЬ может присоединить 4 молекулы 02, в пересчете на 1 г НЬ означает 1,34 мл 02. Зная количество гемоглобина в крови, можно определить кислородную емкость крови (КЕК): КЕК = НЬ-1, 34. Если в 100 мл крови содержится 15 г НЬ, то 15-1,34 = 20 мл 02 в 100 мл крови.
Учитывая, что 100 мл крови содержат только 0,3 мл растворенного 02, можно представить, что основной объем кислорода транспортируется в состоянии химической связи с гемоглобином. Но, несмотря на относительно низкую растворимость, количество растворенного в крови 02 можно увеличить искусственно. Растворимость газа в жидкости зависит от температуры, состава жидкости, давления газа и его природы. Поскольку состав крови, ее температура в организме почти всегда постоянны, количество растворенного газа можно вычислить по формуле:

Q = g V РаО2: Ратм,

где Q-количество растворенного в жидкости газа; g - его адсорбционный коэффициент при t = 37 ° C (для 02 он составляет 0,023); V - объем крови, Ратм - атмосферное давление.

Когда увеличивается давление газа над жидкостью, количество растворенного газа увеличивается. Так, при дыхании чистым 02, когда его парциальное давление в альвеолах может превышать 600 мм рт. ст., в 100 мл крови растворяется уже около 2 мл кислорода. Но если человек находится в условиях с повышенным давлением кислорода (в барокамере), то количество растворенного в крови кислорода будет расти пропорционально давлению (гипербарическая оксигенация). Например, при парциальном давлении 3 атм, когда РАО, увеличивается до 2280 мм рт. ст. (304 кПа), в 100 мл крови может раствориться около 5-6 мл 02. Этого количества кислорода достаточно для того, чтобы ткани не испытывали кислородного даже при отсутствии связанного с гемоглобином 02. Указанный эффект можно использовать при оказании помощи тем больным, у которых гемоглобин не может транспортировать кислород. Например, дыхание чистым кислородом рекомендована при отравлении угарным газом, когда образуется стойкое соединение карбоксигемоглобин (диссоциирует в 1000 раз медленнее, чем оксигемоглобин).
Растворимость газов уменьшается при повышении температуры, но в условиях организма это большой роли не играет. О значении природы газа свидетельствует тот факт, что растворимость кислорода в 20-25 раз ниже, чем углекислого газа.

  • Предыдущая
  • 1 of 3
  • Следующая

В этой части речь идет о переносе газов кровью: о значении физических факторов для переноса газов кровью, о роли давления газов в их переносе кровью, о кислородной емкости крови, о содержании газов в крови, о связывании кислорода кровью, о связывании углекислого газа кровью.

Перенос газов кровью.

Значение физических факторов для переноса газов кровью.

Растворение газов в жидкостях зависит от ряда факторов: от свойств самого газа, от свойств жидкости (концентрации в ней солей, ее температуры), от объема и давления газа над жидкостью.

Показателем растворимости газов служит коэффициент растворимости (или абсорбционный коэффициент). Его величина показывает тот объем газа, который растворяется в 1 см 3 жидкости при температуре 0 градусов Цельсия и давлении 760 мм рт.ст.

Коэффициент растворимости газа тем больше, чем ниже температура; он уменьшается с повышением температуры и при температуре кипения равен нулю (газ из раствора весь испаряется). Коэффициент растворимости в крови для кислорода равен 0,022, для азота - 0,011, для углекислоты - 0,511.

В состоянии растворения в артериальной крови содержится 0,25 мл О 2 , 2,69 мл СО 2 и 1,04 мл N.

Физическое растворение газов очень мало, а поэтому оно не имеет большого значения для их переноса кровью. Важным фактором переноса газов кровью является образование химических соединений с веществами плазмы крови и эритроцитов. Для установления химических связей и физического растворения газов важна величина давления газа над жидкостью.

Роль давления газов в их переносе кровью.

Поступление газа в жидкость зависит от его давления. Если над жидкостью находится смесь газов, то движение и растворение каждого из них зависят от его парциального давления. Парциальное давление можно рассчитать исходя из общего давления смеси газов и их процентного содержания.

Всю газовую смесь атмосферного воздуха принимают за 100%, он обладает давлением 760 мм рт.ст., а часть газа (О 2 - 20,95%) принимают за X. Отсюда: X=(760х20,95):100=159,22 мм рт.ст. При расчете парциального давления газов в альвеолярном воздухе необходимо учитывать, что он насыщен водяными парами, давление которых составляет 47 мм рт.ст. Следовательно, на долю газовой смеси, входящей в состав альвеолярного воздуха приходится давления не 760 мм рт.ст., а 760-47=713 мм рт.ст. Это давление принимается за 100%.

Отсюда легко вычислить, что парциальное давление О 2 , который содержится в альвеолярном воздухе в количестве 14,3%, будет равно: (713х14,3):100=102 мм рт.ст.

Соответственный расчет парциального давления СО 2 показывает, что оно равно 40 мм рт.ст.

Альвеолярный воздух контактирует с тонкими стенками легочных капилляров, по которым приходит к легким венозная кровь. Интенсивность обмена газов и направление их движения (из легких в кровь или из крови в легкие) зависят от парциального давления кислорода и углекислоты в газовой смеси в легких и в крови (давление газов в жидкостях называют их напряжением).

Напряжение кислорода в венозной крови равно 40 мм рт.ст., углекислоты - 46 мм рт.ст. Движение газов осуществляется от большего давления к меньшему. Следовательно. кислород будет поступать из легких (его парциальное давление в них равно 102 мм рт.ст.) в кровь (его напряжение в крови 400 мм рт.ст.) в альвеолярный воздух (давление 40 мм рт.ст.)

Кислородная емкость крови. Содержание газов в крови.

В крови кислород соединяется с гемоглобином и образует непрочное соединение - оксигемоглобин. Насыщение крови кислородом зависит от количества гемоглобина в крови. Максимальное количество кислорода, которое может поглотить 100 мл крови, называют кислородной емкостью крови. Известно, что в 100 г крови человека содержится 14% гемоглобина. Каждый грамм гемоглобина может связать 1,34 мл О 2 . Значит, 100 мл крови могут перенести 1,34х14%=19 мл (или 19 объемных процентов). Это и есть кислородная емкость крови.

Связывание кислорода кровью.

В артериальной крови 0,25 объемного процента О 2 находится в состоянии физического растворения в плазме, а остальные 18,75 объемного процента - в эритроцитах в связанном состоянии с гемоглобином в виде оксигемоглобина. Связь гемоглобина с кислородом зависит от величины напряжения газов: если оно увеличивается, гемоглобин присоединяет кислород и образуется оксигемоглобин (НВО 2). При уменьшении напряжения кислорода оксигемоглобин распадается и отдает кислород. Кривую, отражающую зависимость насыщения гемоглобина кислородом от напряжения последнего, называют кривой диссоциации оксигемоглобина. Даже при небольшом парциальном давлении кислорода (40 мм рт.ст.) с ним связываются 75-80% гемоглобина. При давлении 80-90 мм рт.ст. гемоглобин почти полностью насыщается кислородом. В альвеолярном воздухе парциальное давление кислорода равно 120 мм рт.ст., поэтому кровь в легких будет полностью насыщена кислородом.

При рассмотрении кривой диссоциации оксигемоглобина можно заметить, что при уменьшении парциального давления кислорода оксигемоглобин подвергается диссоциации и отдает кислород. При нулевом давлении кислорода оксигемоглобин может отдать весь соединенный с ним кислород.

Свойство гемоглобина - легко насыщаться кислородом, даже при небольших давлениях, и легко его отдавать - очень важно.

Благодаря легкой отдаче гемоглобином кислорода при снижении парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела.

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина.

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, так же как не происходит полной отдачи кислорода при снижении его парциального давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови.

Особое значение в связывании гемоглобина с кислородом имеет содержание СО 2 в крови. Чем больше содержится углекислоты в крови, тем меньше связывается гемоглобин с кислородом и тем быстрее происходит диссоциация оксигемоглобина. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении СО 2, равном 46 мм рт.ст. в венозной крови. Влияние СО 2 на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество СО 2 и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же, по мере выделения СО 2 из венозной крови в альвеолярный воздух. с уменьшением содержания СО 2 в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Связывание углекислого газа кровью.

В артериальной крови содержится 50-52% СО 2 , а в венозной на 5-6% больше - 55-58%. из них 2,5-2,7 объемного процента в состоянии физического растворения, а остальная часть СО 2 переносится в виде солей угольной кислоты: бикарбоната натрия (NaHCO 3) в плазме и бикарбоната калия (KHCO 3) - в эритроцитах. Часть углекислого газа (от 10 до 20 объемных процентов) может транспортироваться в виде соединений с аминогруппой гемоглобина - карбгемоглобина.

Из всего количества СО 2 большая его часть (2/3) переносится плазмой крови.

Одной из важнейших реакций, обеспечивающих транспорт СО 2 , является образование угольной кислоты из СО 2 и Н 2 О:

H 2 O+CO 2 ↔H 2 CO 3

Такая реакция в крови ускоряется приблизительно в 20 000 раз. Большая скорость этой реакции обеспечивается ферментом карбоангидразой. При увеличении содержания СО 2 в крови (что бывает в тканях) фермент способствует гидратации СО 2 и реакция идет в сторону образования Н 2 СО 3 . При уменьшении парциального напряжения СО 2 в крови (что имеет место в легких) фермент карбоангидраза способствует дегидратации Н 2 СО 3 и реакция идет в сторону образования СО 2 и Н 2 О. Это обеспечивает наиболее быструю отдачу СО 2 в альвеолярный воздух.

Связывание СО 2 кровью, так же как и кислорода, зависит от парциального давления. Можно построить кривые диссоциации углекислоты, отложив на оси абсцисс парциальное давление СО 2 , а на оси ординат - количество связанного углекислого газа в объемных процентах. Кривая показывает, что связывание СО 2 кровью увеличивается по мере возрастания его парциального давления.

При парциальном напряжении СО 2 , равном 40 мм рт.ст. (что соответствует его напряжению в артериальной крови), в крови содержится 52% углекислоты. При напряжении СО 2 , равном 46 мм рт.ст. (что соответствует напряжению в венозной крови), содержание СО 2 возрастает до 58%.

На связывание СО 2 кровью влияет присутствие оксигемоглобина в крови. Эту зависимость можно проследить при переходе артериальной крови в венозную. Сравнение нижней кривой и верхней НА РИСУНКЕ

показывает, что при превращении артериальной крови в венозную солями гемоглобина отдается кислород и тем самым облегчается ее насыщение углекислым газом. При этом содержание СО 2 в ней увеличивается на 6%: с 52% до 58%.

В сосудах легких образование оксигемоглобина способствует отдаче СО 2 , содержание которого при превращении венозной крови в артериальную уменьшается с 58 до 52 объемных процентов. В присутствии кислорода из крови удаляется весь СО 2 при его нулевом напряжении в окружающей среде. В присутствии азота, даже при нулевом напряжении СО 2 в окружающей среде, часть его остается связанным с кровью.

  • Кислородная ёмкость крови - количество кислорода, которое может быть связано кровью при её полном насыщении; выражается в объёмных процентах (% об.); зависит от концентрации в крови гемоглобина. Определение Кислородной ёмкости крови важно для характеристики дыхательной функции крови. Кислородная ёмкость крови человека - около 18-20 % об.

Связанные понятия

Протромбиновое время (ПТВ) и его производные протромбиновый индекс (ПТИ) и международное нормализованное отношение (МНО) - лабораторные показатели, определяемые для оценки внешнего пути свёртывания крови. Используются при оценке системы гемостаза в целом, эффективности терапии варфарином, степени нарушения печеночной функции (синтеза факторов коагуляции), степени насыщения витамином К. ПТВ позволяет оценить активность факторов свертывания I, II, V, VII и X. Зачастую определяется вместе с показателем...

Трансфузиология (от лат. transfusio «переливание» и -логия от др.-греч. λέγω «говорю, сообщаю, рассказываю») - раздел медицины, изучающий вопросы трансфузии (смешения) биологических и заменяющих их жидкостей организмов, в частности крови и её компонентов, групп крови и групповых антигенов (изучается в гемотрансфузиология), лимфы, а также проблемы совместимости и несовместимости, пост-трансфузионных реакций, их профилактики и лечения.

Мониторинг оксигенации головного мозга - является важнейшим компонентом нейромониторинга больных с внутричерепными кровоизлияниями, находящихся в критическом состоянии. К методам оценки оксигенации и метаболизма головного мозга относят: определение насыщения гемоглобина кислородом в яремной вене, прямое определение напряжения кислорода в ткани мозга, церебральную оксиметрию и микродиализ вещества головного мозга.

Микроаэрофильный организм - микроорганизм, требующий, в отличие от строгих анаэробов, для своего роста присутствия кислорода в атмосфере или питательной среде, но в пониженных концентрациях по сравнению с содержанием кислорода в обычном воздухе или в нормальных тканях организма хозяина (в отличие от аэробов, для роста которых необходимо нормальное содержание кислорода в атмосфере или питательной среде). Многие микроаэрофилы так же являются капнофилами, то есть им требуется повышенная концентрация...

Ретикулоци́ты (от лат. reticulum - сеточка и греч. κύτος - вместилище, клетка) - клетки - предшественники эритроцитов в процессе кроветворения, составляющие около 1 % от всех циркулирующих в крови эритроцитов. Также, как и эритроциты, не имеют ядра, но содержат остатки рибонуклеиновых кислот, митохондрий и других органелл, лишаясь которых, трансформируются в зрелый эритроцит.

Феррити́н - сложный белковый комплекс (железопротеид), выполняющий роль основного внутриклеточного депо железа у человека и животных. Структурно состоит из белка апоферритина и атома трехвалентного железа в составе фосфатного гидроксида. Одна молекула ферритина может содержать до 4000 атомов железа. Содержится практически во всех органах и тканях и является донором железа в клетках, которые в нём нуждаются.В 2001 году учёным удалось открыть ферритин, который содержится в митохондриях (ген FTMT...

Обезвоживание организма , дегидратация, эксикоз (лат. exsiccosis) - патологическое состояние организма, вызванное уменьшением количества воды в нём ниже физиологической нормы, сопровождающееся нарушениями метаболизма. Причиной обезвоживания могут быть различные заболевания, в том числе связанные с значительными потерями воды (потоотделение, рвота, диурез, диарея) либо недостаточное поступление воды в организм; работа в условиях нагревающего микроклимата. Также может возникать при острой недостаточности...

Сигнальные молекулы газообразных веществ - это малые молекулы таких химических соединений, которые при температуре тела и нормальном атмосферном давлении находились бы в газообразном агрегатном состоянии, будучи выделены в свободном виде. Сигнальные молекулы газообразных веществ выполняют в организме, ткани или клетке сигнальные функции, вызывая своим воздействием физиологические или биохимические изменения и/или участвуя в регуляции и модуляции физиологических и биохимических процессов. Некоторые...

Анаэробный порог (АнП) - уровень потребления кислорода, выше которого анаэробная продукция высокоэнергетических фосфатов (АТФ) дополняет аэробный синтез АТФ с последующим снижением окислительно-восстановительного состояния цитоплазмы, увеличением отношения Л/П, и продукцией лактата клетками, находящимися в состоянии анаэробиоза (ПАНО).

Анализ крови - лабораторное исследование крови, основная диагностика при большинстве заболеваниях. На основе полученных результатов анализа крови ставится диагноз и назначается дальнейшее лечение.

Гипоальбуминемия - патологическое состояние, характеризующееся снижением уровня альбумина в сыворотке крови ниже 35 грамм/литр. Форма гипопротеинемии. В основном наблюдается при нефротическом синдроме, сепсисе, алиментарной дистрофии, почечной и печеночной недостаточности.

Бу́ферные систе́мы кро́ви (от англ. buffer, buff - «смягчать удар») - физиологические системы и механизмы, обеспечивающие заданные параметры кислотно-основного равновесия в крови. Они являются «первой линией защиты», препятствующей резким перепадам pH внутренней среды живых организмов.

Эндогенный сероводород производится в небольших количествах клетками млекопитающих и выполняет ряд важных биологических функций, в том числе сигнальную. Это третий из открытых «газотрансмиттеров» (после окиси азота и угарного газа).

Подробнее: (АЧТВ) является показателем измерения эффективности «внутреннего» (путь контактной активации) и общего пути свертывания. Помимо выявления нарушений в процессе свертывания крови, АЧТВ также используется для контроля эффективности лечения гепарином, основным антикоагулянтом. Тест используется в сочетании с тестом протромбинового времени (ПВ), который измеряет внешний путь свертываемости.

Общий клинический анализ крови (ОАК) (развернутый клинический анализ крови) - врачебный анализ, позволяющий оценить содержание гемоглобина в системе красной крови, количество эритроцитов, цветовой показатель, количество лейкоцитов, тромбоцитов. Клинический анализ крови позволяет рассмотреть лейкограмму и скорость оседания эритроцитов (СОЭ).

Пла́зма кро́ви (от греч. πλάσμα «нечто сформированное, образованное») - жидкая часть крови, в которой взвешены форменные элементы - вторая часть крови. Процентное содержание плазмы в крови составляет 52-61 %. Макроскопически представляет собой однородную несколько мутную (иногда почти прозрачную) желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови.

Гемодиализ (др.-греч. αἷμα ‘кровь’ и διάλυσις ‘отделение’) - метод внепочечного очищения крови при острой и хронической почечной недостаточности. Во время гемодиализа происходит удаление из организма токсических продуктов обмена веществ, нормализация нарушений водного и электролитного балансов.

Моча ́, или ури́на (лат. urina) - вид экскрементов, продукт жизнедеятельности животных и человека, выделяемый почками.

Карбоксигемоглобин (HbCO) - прочное соединение гемоглобина и угарного газа. Избыток карбоксигемоглобина в крови приводит к кислородному голоданию, головокружению, тошноте, рвоте или даже смерти, так как угарный газ, связанный с гемоглобином, лишает его возможности присоединять к себе кислород.

Оксигена́тор (blood gas exchange device) - газообменное одноразовое устройство, предназначенное для насыщения крови кислородом и удаления из неё углекислоты. Оксигенатор используется во время кардиохирургических операций, или для улучшения кровообращения в организме больного, страдающего заболеваниями сердца или лёгких, при которых содержание кислорода в крови значительно снижается.

Свёртывание крови - это важнейший этап работы системы гемостаза, отвечающий за остановку кровотечения при повреждении сосудистой системы организма. Совокупность взаимодействующих между собой весьма сложным образом различных факторов свёртывания крови образует систему свёртывания крови.

Кисло́тно-осно́вное равнове́сие - относительное постоянство соотношения кислота-основание внутренней среды живого организма. Также называют кислотно-щелочным балансом, равновесием кислот и оснований. Является составной частью гомеостаза. Количественно характеризуется либо концентрацией водородных ионов (протонов) в молях на 1 л, либо водородным показателем pH.

Кислородная емкость крови - количество кислорода, одномоментно находящегося в связанном виде с гемоглобином в артериальной крови.

легкие снабжаются кровью от обоих кругов кровообращения. Но газообмен происходит только в капиллярах малого круга, в то время как сосуды большого круга кровообращения обеспечивают питание легочной ткани. В области капиллярного русла сосуды разных кругов могут анастомозировать между собой, обеспечивая необходимое перераспределение крови между кругами кровообращения. Сопротивляемость току крови в сосудах легких и давление в них меньше, чем в сосудах большого круга кровообращения, диаметр легочных сосудов больший, а длина их меньшая. Во время вдоха увеличивается приток крови в сосуды легких и вследствие их растяжимости они способны вмещать до 20-25% крови. Поэтому легкие при определенных условиях могут выполнять функцию депо крови. Стенки капилляров легких тонкие, что создает благоприятные условия для газообмена, но при патологии это может привести к их разрыву и легочному кровотечению. Резерв крови в легких имеет большое значение в случаях когда необходима срочная мобилизация дополнительного количества крови для поддержания необходимой величины сердечного выброса, например в начале интенсивной физической работы, когда другие механизмы регуляции кровообращения еще не включились.

Газообмен - это транскапиллярный обмен дыхательных газов (СО2 и О2). Осуществляется между венозной кровью и воздухом альвеол, в малом кругу кровообращения, и между артериальной кровью и тканями в большом кругу кровообращения.

Газообмен в капиллярах малого круга.

Значение рО2 и рСО2 в

В легких: Тканях:

рО2 = 103 mmHgpO2 = 40 mmHg

pCO2 = 40 mm Hg pCO2 = 46 mmHg

1. Разрушить соединения, в виде которых СО2 транспортируется в кровь и вывести их.

2. Оксигенировать кровь

1) HHbCO2 – диссоциирует по градиенту давления:

HHbCO2 àHHb + CO2

2) Чем больше Hb сбрасывает СО2, тем легче он связывается с О2 по градиенту давления:

HHb + O2 = HHbO2

В эритроците сейчас находятся следующие вещества:

KHCO3 иHHbO2, которые взаимодействуют друг с другом:

KHCO3 + HHbO2-àKHbO2 + H2CO3

Под действием карбоангидразы:

H2CO3 -àCO2 + H2O

К этому времени мы освободились от двух соединений, транспортируемых СО2 (HHbCO2 иKHCO3)

Нам осталось освободится от NaHCO3 находящийся в плазме крови.

В МКК Н2СО3 ферментативно расщепляется на H2OиCO2, а не спонтанно диссоциирует на Н+ и НСО3-

В малом кругу в крови практически нет иона бикарбоната, поэтому НСО3- дифундирует из плазмы крови в эритроците. В эритроците НСО3- связывается с протоном Н+ чуть –чуть подкисливая кровь образуется Н2СО3 – расщепляется на Н2О и СО2:

HCO3- + H+ àH2CO3 àH2O + CO2

Итак, все три соединения в виде которых СО2 транспортируется в МКК. Это:

KHCO3 – в эритроците

NaHCO3 – в плазме

HHbCO3 – в эритроците

Кислородная емкость крови _ это количество мл О2 транспортируется кровью

КЕК ограниченна содержанием Нb

Hb – 14,2% - количество грНb 100 ml

1 грHb может связываться с 1,34 мл О2 – коэффициент Хюффнера

КЕК = 1,34 * 14=19 об.%

Объемный % - количество мл газов, содержащихся в 100 мл крови.

Кислород в крови находится в растворенном виде и в соединении с гемоглобином. В плазме растворено очень небольшое количество кислорода. Поскольку растворимость кислорода при 37 °С составляет 0.225 мл * л-1 * кПа-1 (0.03 мл-л-1мм рт.ст.-1), то каждые 100 мл плазмы крови при напряжении кислорода 13.3 кПа (100 мм рг.ст.) могут переносить в растворенном состоянии лишь 0.3 мл кислорода. Это явно недостаточно для жизнедеятельности организма. При таком содержании кислорода в крови и условии его полного потребления тканями минутный объем крови в покое должен был бы составлять более 150 л/мин.

Каждый грамм гемоглобина способен связать 1.39 мл кислорода и, следовательно, при содержании гемоглобина 150 г/л каждые 100 мл крови могут переносить 20.8 мл кислорода.

Показатели дыхательной функции крови:

1. Кислородная емкость гемоглобина.

3. Степень насыщения гемоглобина кислородом.

Кислородная ёмкость крови - количество кислорода, которое может быть связано кровью при её полном насыщении; выражается в объёмных процентах (% об.); зависит от концентрации в крови гемоглобина. Кислородная ёмкость крови человека - около 18-20 % об.

43. Транспорт СО 2 кровью.

С02 образуется в тканях при окислительных процессах. С02 растворяется в жидкостях активнее, чем 02.

Кровь, проходящая через легкие, отдает далеко не весь С02. Большая часть его остается в артериальной крови, поскольку соединения, которые образуются на основе С02, участвуют в поддержании кислотно-основного равновесия крови - одного из параметров гомеостаза.

Химически связанный С02 находится в крови в одной из трех форм:

1) угольная кислота (Н2С03):

2) бикарбонатный ион (НСОИ)

3) карбогемоглобин (ННЬС02).

Эта реакция в плазме крови происходит медленно. В эритроците, куда С02 проникает по градиенту концентрации, благодаря специальному ферменту - карбоангидразы - этот процесс ускоряется примерно в 10 000 раз. Поэтому эта реакция происходит в основном в эритроцитах. Взаимосвязь транспорта кислорода и диоксида углерода. Выше указывалось, что форма кривой диссоциации оксигемоглобина влияет на содержание С02 в крови.

44. Обмен газов между кровью и тканями. Диффузия О 2 и СО 2. Роль миоглобина. Артерио-венозная разность (АВР) по кислороду в покое и при мышечной работе разной мощности.

Газообмен между кровью и тканями осуществляется путем диффузии. Между кровью в капиллярах и межтканевой жидкостью существует градиент напряжения кислорода который составляет 30-80 мм рт. ст., а напряжение СО2, в интерстициальной жидкости на 20-40 мм рт. ст. выше, чем в крови.

Артериальная кровь отдаст тканям не весь О2. Разность между об.% О2 в притекающей к тканям артериальной крови (около 20 об.%) и оттекающей от них венозной кровью (примерно 13об.%) называется артерио-венозной разностью по кислороду (7об.%). Эта величина служит важной характеристикой дыхательной функции крови, показывая, какое количество

О2., доставляют тканям каждые 100 мл крови. Для того чтобы установить, какая часть приносимого кровью О2 переходит в ткани, вычисляют коэффициент использования кислорода. Его определяют путем деления величины артерио-венозной разности на содержание О2 в артериальной крови и умножения на 100. При тяжелых физических нагрузках коэффициент утилизации кислорода работающими скелетными мышцами и миокардом достигает 80-90%. В снабжении мышц 02 при тяжелой работе имеет определенное значение внутримышечный пигмент миоглобин, который связывает дополнительно 1,0-1,5 л О Связь 02 с миоглобином более прочная, чем с гемоглобином.