Как найти ускорение через коэффициент трения. Как найти силу трения без коэффициента трения

Научно-практическая конференция

Коэффициент трения и м етоды его расчета

Пенза 2010 г.

I глава. Теоретическая часть

1. Виды трения, коэффициент трения

II глава. Практическая часть

    Расчет трения покоя, скольжения, и качения

    Расчет коэффициента трения покоя

Список литературы

I глава. Теоретическая часть

1. Виды трения, коэффициент трения

С трением мы сталкиваемся на каждом шагу. Вернее было бы сказать, что без трения мы и шагу ступить не можем. Но несмотря на ту большую роль, которую играет трение в нашей жизни, до сих пор не создана достаточно полная картина возникновения трения. Это связано даже не с тем, что трение имеет сложную природу, а скорее с тем, что опыты с трением очень чувствительны к обработке поверхности и поэтому трудно воспроизводимы.

Существует внешнее и внутреннее трение (иначе называемое вязкостью ). Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении. слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению.

Внешнее трение подразделяют на трение покоя (статическое трение ) и кинематическое трение . Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения .

В жизни человека силы трения играют важную роль. В одних случаях он их использует, а в других борется с ними. Силы трения имеют электромагнитную природу.

Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения.

Где N - сила реакции опоры, a μ - коэффициент трения скольжения. Коэффициент μ зависит от материала и качества обработки соприкасающихся поверхностей и не зависит от веса тела. Коэффициент трения определяется опытным путем.

Сила трения скольжения всегда направлена противоположно движению тела. При изменении направления скорости изменяется и направление силы трения.

Сила трения начинает действовать на тело, когда его пытаются сдвинуть с места. Если внешняя сила F меньше произведения μN, то тело не будет сдвигаться - началу движения, как принято говорить, мешает сила трения покоя . Тело начнет движение только тогда, когда внешняя сила F превысит максимальное значение, которое может иметь сила трения покоя

Трение покоя – сила трения, препятствующая возникновению движению одного тела по поверхности другого.

II глава. Практическая часть

1. Расчет трения покоя, скольжения и качения

Основываясь на вышесказанное, я, опытном путем, находил силу трения покоя, скольжения и качения. Для этого я использовал несколько пар тел, в результате взаимодействия которых будет возникать сила трения, и прибор для измерения силы – динамометр.

Вот следующие пары тел:

    деревянный брусок в виде прямоугольного параллепипеда определенной массы и лакированный деревянный стол.

    деревянный брусок в виде прямоугольного параллепипеда с меньшей чем первый массой и лакированный деревянный стол.

    деревянный брусок в виде цилиндра определенной массы и лакированный деревянный стол.

    деревянный брусок в виде цилиндра с меньшей чем первый массой и лакированный деревянный стол.

После того как были проведены опыты – можно было сделать следующий вывод –

Сила трения покоя, скольжения и качения определяется опытном путем.

Трение покоя:

Для 1) Fп=0.6 Н, 2) Fп=0.4 Н, 3) Fп=0.2 Н, 4) Fп=0.15 Н

Трение скольжение:

Для 1) Fс=0.52 Н, 2) Fс=0.33 Н, 3) Fс=0.15 Н, 4) Fс=0.11 Н

Трение качение:

Для 3) Fк=0.14 Н, 4) Fк=0.08 Н

Тем самым я определил опытным путем все три вида внешнего трения и получил что

Fп> Fс > Fк для одного и того же тела.

2. Расчет коэффициента трения покоя

Но в большей степени интересна не сила трения, а коэффициент трения. Как его вычислить и определить? И я нашел только два способа определения силы трения.

Первый способ: очень простой. Зная формулу и определив опытным путем и N, можно определить коэффициент трения покоя, скольжения и качения.

1) N  0,81 Н, 2) N  0,56 Н, 3) N  2,3 Н, 4) N  1,75

Коэффициент трения покоя:

    = 0,74; 2)  = 0,71; 3)  = 0,087; 4)  = 0,084;

Коэффициент трения скольжения:

    = 0,64; 2)  = 0,59; 3)  = 0,063; 4)  = 0,063

Коэффициент трения качения:

3)  = 0,06; 4)  = 0,055;

Сверяясь с табличными данными я подтвердил верность своих значений.

Но также очень интересен второй способ нахождения коэффициента трения.

Но этот способ хорошо определяет коэффициент трения покоя, а для вычисления коэффициента трения скольжения и качения возникают ряд затруднений.

Описание: Тело находится с другим телом в покое. Затем конец второго тела на котором лежит первое тело начинают поднимать до тех пор пока первое тело не сдвинется с места.

 = sin  /cos  =tg  =BC/AC

На основе второго способа мной были вычислены некоторое число коэффициентов трения покоя.

      Дерево по дереву:

АВ = 23,5 см; ВС = 13,5 см.

П = BC/AC = 13,5/23,5 = 0,57

2. Пенопласт по дереву:

АВ = 18,5 см; ВС = 21 см.

П = BC/AC = 21/18,5 = 1,1

3. Стекло по дереву:

АВ = 24,3 см; ВС = 11 см.

П = BC/AC = 11/24,3 = 0,45

4. Алюминий по дереву:

АВ = 25,3 см; ВС = 10,5 см.

П = BC/AC = 10,5/25,3 = 0,41

5. Сталь по дереву:

АВ = 24,6 см; ВС = 11,3 см.

П = BC/AC = 11,3/24,6 = 0,46

6. Орг. Стекло по дереву:

АВ = 25,1 см; ВС = 10,5 см.

П = BC/AC = 10,5/25,1 = 0,42

7. Графит по дереву:

АВ = 23 см; ВС = 14,4 см.

П = BC/AC = 14,4/23 = 0,63

8. Алюминий по картону:

АВ = 36,6 см; ВС = 17,5 см.

П = BC/AC = 17,5/36,6 = 0,48

9. Железо по пластмассе:

АВ = 27,1 см; ВС = 11,5 см.

П = BC/AC = 11,5/27,1 = 0,43

10. Орг. Стекло по пластику:

АВ = 26,4 см; ВС = 18,5 см.

П = BC/AC = 18,5/26,4 = 0,7

На основе своих расчетов и проведенных экспериментах я сделал вывод что  П >  C >  К , что неоспоримо соответствовало теоретической базе взятой из литературы. Результаты моих вычислений не вышли за рамки табличных данных, а даже дополнили их, в результате чего я расширил табличные значения коэффициентов трений различных материалов.

Литература

1. Крагельский И.В., Добычин М.Н., Комбалов В.С. Основы расчетов на трение и износ. М.: Машиностроение, 1977. 526 с.

      Фролов, К. В. (ред.): Современная трибология: Итоги и перспективы . Изд-во ЛКИ, 2008 г.

      Елькин В.И.“Необычные учебные материалы по физике”. “Физика в школе” библиотека журнала, №16, 2000.

      Мудрость тысячелетий. Энциклопедия. Москва, Олма – пресс, 2006.

(Занятие каникулярной школы для учащихся 8–9 кл.)

  • Активизация мыслительной деятельности учащихся.
  • Формирование обобщенного умения проводить физические измерения.
  • Формирование обобщенного умения проводить экспериментальную проверку физических закономерностей.
  • Формирование умения систематизировать полученные результаты в виде таблицы, умение делать вывод на основе эксперимента.

Организация проведения практикума: Все учащиеся принимающие участие в работе практикума делятся на группы. Каждая группа учащихся получает задание с кратким описанием работы.

По окончании выполнения работы учащимся необходимо составить отчет. Отчет состоит из таблицы, вычисления искомой величины и ее погрешности, вывода по работе.

Ход работы

I. Вступительное слово учителя:

Если положить на горизонтальную поверхность брусок и подействовать на него с достаточной силой в горизонтальном направлении, то брусок станет двигаться. Нетрудно убедиться, что в этом случае на брусок действуют четыре силы: в вертикальном направлении – сила тяжести P и сила реакции опоры Q, равные по модулю противоположные по направлению; в горизонтальном направлении – сила тяги F и противоположная по направлению сила трения F mp .

Чтобы брусок двигался равномерно и прямолинейно, нужно, чтобы модуль силы тяги был равен модулю силы трения.

На этом основан метод измерения силы трения. Следует приложить к бруску силу тяги, которая будет поддерживать равномерное прямолинейное движение этого тела. По этой силе тяги определяют модуль силы трения.

II. Практикум.

Задание группе I.

Определите коэффициент трения скольжения при движении бруска по горизонтальной поверхности стола.

Оборудование: трибометр, деревянная линейка, деревянный бруска с тремя отверстиями; динамометр; набор грузов по механике.

Порядок выполнения работы.

  1. Вычислите цену деления шкалы динамометра.
  2. Измерьте вес бруска при помощи динамометра. Результат измерения веса запишите в таблицу.
  3. Измерьте силу трения скольжения бруска с грузами по столу. Для этого перемещайте брусок с грузами равномерно по столу при помощи динамометра.
  4. Результат измерения запишите в таблицу.
  5. Нагружая брусок одним, двумя и тремя грузами, измерьте в каждом случае силу трения. Данные занесите в таблицу.
  6. Вычислите коэффициент трения скольжения
  7. Определите инструментальную погрешность коэффициента трения.
  8. Сделайте вывод.

Легко убедиться, что в случае движения тела по горизонтальной поверхности сила нормального давления равна силе тяжести, действующей на это тело: N = P . Это позволяет вычислить коэффициент трения:

Цена деления шкалы динамометра, ц.д = 0,1 Н.

1. Определили вес бруска и груза с помощью динамометра, записали в таблицу.

2. Двигая брусок равномерно по деревянной линейке, определили силу тяги, которая равна силе трения. Записали ее значение в таблицу.

3. Определили коэффициент трения для каждого измерения силы трения, занесли их в таблицу.

4. Определили погрешность измерения для каждого значения коэффициента силы трения.

1. Коэффициент трения равен 0,2.
2. Инструментальная погрешность измерения равна 0,06.
3. Коэффициент трения скольжения при взаимном движении тела по поверхности стола является величиной постоянной не зависящей от силы нормального давления.

2. Сравните коэффициент трения покоя, скольжения и качения. Сделайте вывод.

Оборудование: динамометр, брусок деревянный, грузы с двумя крючками – 2 шт., карандаши круглые – 2 шт.

Порядок выполнения работы.

2. Измерьте вес бруска с двумя грузами при помощи динамометра. Результат измерения веса запишите в тетрадь.

3. Измерьте максимальную силу трения покоя бруска по столу. Для этого положите брусок на стол, а на брусок два груза; к бруску прицепите динамометр и приведите брусок с грузами в движение. Запишите показания динамометра, соответствующее началу движения бруска.

4. Измерьте силу трения скольжения бруска с грузами по столу. Для этого перемещайте брусок с грузами равномерно по столу при помощи динамометра. Результат измерения силы запишите в тетрадь.

5. Измерьте силу трения качения бруска по столу. Для этого положите брусок с двумя грузами на два круглых карандаша и перемещайте равномерно брусок по столу при помощи динамометра. Результат измерения силы запишите в тетрадь.

6. Сделайте вывод о том, какая сила больше:
а) вес тела или максимальная сила трения покоя?
б) максимальная сила трения покоя или сила трения скольжения?
в) сила трения скольжения или сила трения качения?

7. Сравните коэффициент трения покоя, трения скольжения и трения качения.

а) Вес тела больше чем максимальная сила трения покоя.

б) Максимальная сила трения покоя больше чем сила трения скольжения.

в) Сила трения скольжения больше чем сила трения качения.

г) При неизменном весе тела, наименьшее значение коэффициент трения имеет при качении тела, а наибольшее в случае покоя.

3. Определите коэффициент трения скольжения при движении бруска вдоль поверхности резины, нешлифованной деревянной рейки, наждачной бумаги.

Оборудование: динамометр, брусок деревянный, грузы с двумя крючками – 2 шт., отрез линолеума, деревянная нешлифованная рейка, наждачная бумага.

Порядок выполнения работы.

1. Вычислите цену деления шкалы динамометра.
2. Измерьте вес бруска при помощи динамометра. Результат измерения веса запишите в таблицу.
3. Измерьте силу трения скольжения бруска с грузами по поверхности резины, деревянной нешлифованной линейки и по поверхности наждачной бумаги. Для этого перемещайте брусок с грузами равномерно по столу при помощи динамометра. Результат измерения запишите в таблицу.
4. Вычислите коэффициент трения скольжения.
5. Сделайте вывод.

Цена деления шкалы динамометра, ц.д = 0,1 Н.

1. Сила трения:

а) зависит от рода трущихся поверхностей.
б) зависит от шероховатости трущихся поверхностей.
в) чем больше шероховатости поверхности, тем коэффициент трения больше.

2. Способы увеличения или уменьшения силы трения скольжения:

Увеличить: увеличить шероховатость трущихся поверхностей, насыпать между трущихся поверхностей частицы (стружку, опилки, песок).

Уменьшить: шлифовка, полировка трущихся поверхностей, нанесение смазки.

Задание группе II.

Измерение коэффициент трения скольжения, используя наклонную плоскость

Оборудование : линейка деревянная от трибометра, брусок деревянный, линейка измерительная, штатив.

Порядок выполнения работы .

1. Используя штатив, закрепите линейку под углом к столу.
2. Положите брусок на закрепленную под углом деревянную линейку.
3. Меняя угол наклона линейки, найдите такой максимальный угол, при котором брусок еще покоится.
4. Измерьте длину основания линейки и высоту подъема линейки.
5. Рассчитайте значение коэффициента трения скольжения дерева о дерево по формуле:

6. Рассчитайте погрешность измерения.
7. Вывод.

Экспериментальные данные.

Измерили высоту подъема и длину основания линейки.

1. Коэффициент трения равен 0,3.
2. Погрешность измерения равна 0,0016.

2. Измерение коэффициента трения скольжения, через опрокидывание бруска

Оборудование: брусок деревянный, линейка деревянная от трибометра, нить, линейка ученическая.

Порядок выполнения работы.

Теоретическое обоснование: Брусок с привязанной к длинной грани нитью поставьте торцом на горизонтальную поверхность стола и тяните за нить. Если нить закреплена невысоко над поверхностью стола, то брусок будет скользить. При определенной высоте h точки А крепления нити сила натяжения нити F опрокидывает брусок.

Условия равновесия для этого случая относительно точки – угла опрокидывания:

Fh – mga/2 = 0;

Согласно II закону Ньютона: F – Fтр = 0;

Обработка результатов.




4. Сделайте вывод.

Экспериментальный расчет.

a = 45 ± 1 мм, h = 80 ± 1 мм.

1. Коэффициент трения равен 0,28.
2. Инструментальная погрешность измерения равна 0,0098.

3. Измерение коэффициента трения скольжения с помощью карандаша.

Оборудование: карандаш, линейка деревянная от трибометра, линейка ученическая.

Порядок выполнения работы.

Теоретическое обоснование: Поставьте карандаш на стол вертикально, нажмите на него, наклоните и наблюдайте характер его падения. При небольших углах наклона к вертикали карандаш не проскальзывает относительно поверхности стола при любой величине силы, прижимающей его к столу. Проскальзывание начинается с некоторого критического угла, зависящего от силы трения.

Записываем второй закон Ньютона в проекциях на координатные оси при угле наклона, равном критическому. (Силой тяжести mg, действующей на карандаш, по сравнению с большой силой F пренебрегаем).

Обработка результатов:

1. Рассчитайте по формуле значение коэффициента трения скольжения дерева о дерево.
2. Определите погрешность измерений.
3. Запишите полученный ответ с учетом допущенных погрешностей измерений.
4. Сделайте вывод.

Экспериментальный расчет.

1. Обработка результатов

α = 30 0 ,

µ= tgα = sina /cosa

1. Коэффициент трения равен 0,58.

III. Подведение итогов практикума:

Сила трения скольжения зависит:

а) От рода трущихся поверхностей.
б) От шероховатости трущихся поверхностей.
в) Прямо пропорционально от силы давления.
г) Коэффициент трения скольжения при взаимном движении тела по поверхности является величиной постоянной не зависящей от силы нормального давления.
д) Чем больше шероховатости поверхности, тем коэффициент трения больше.

Лабораторная работа № 3 «Измерение коэффициента трения скольжения»

Цель работы: найти коэффициент трения древесного бруска, скользящего по древесной линейке, используя формулу F тр = = μР. При помощи динамометра определяют силу, с которой необходимо тянуть брусок с грузами по горизонтальной поверхности так, чтоб он двигался умеренно. Эта сила равна по модулю силе трения F тp , действующей на брусок. При помощи такого же динамометра можно отыскать вес бруска с грузом. Этот вес по модулю равен силе обычного давления N бруска на поверхность, по которой он скользит. Определив таким макаром значения силы трения при разных значениях силы обычного давления, нужно выстроить график зависимости F тр от Р и найти среднее значение коэффициента трения (см. работу № 2).

Коэффициент трения - Физика в опытах и экспериментах

Главным измерительным устройством в этой работе является динамометр. Динамометр имеет погрешность Δ д =0,05 Н. Она и равна погрешности измерения, если указатель совпадает со штрихом шкалы. Если же указатель в процессе измерения не совпадает со штрихом шкалы (либо колеблется), то погрешность измерения силы равна ΔF = = 0,1 Н.

Средства измерения: динамометр.

Материалы: 1) древесный брусок; 2) древесная линейка; 3) набор грузов.

Порядок выполнения работы.

1. Положите брусок на горизонтально расположенную древесную линейку. На брусок поставьте груз.

2. Прикрепив к бруску динамометр, как можно более умеренно тяните его вдоль линейки. Замерьте при всем этом показание динамометра.

3. Взвесьте брусок и груз.

4. К первому грузу добавьте 2-ой, 3-ий грузы, всякий раз взвешивая брусок и грузы и измеряя силу трения.

По результатам измерений заполните таблицу:

5. По результатам измерений постройте график зависимости силы трения от силы давления и, пользуясь им, обусловьте среднее значение коэффициента трения μ ср (см. работу № 2).

6. Высчитайте наивысшую относительную погрешность измерения коэффициента трения. Потому что.

(см. формулу (1) работы № 2).

Из формулы (1) следует, что с большей погрешностью измерен коэффициент трения в опыте с одним грузом (потому что в данном случае знаменатели имеют меньшее значение) .

7. Найдите абсолютную погрешность.

и запишите ответ в виде:

Требуется найти коэффициент трения скольжения древесного бруска, скользящего по древесной линейке.

Сила трения скольжения.

где N - реакция опоры; μ - ко.

эффициент трения скольжения, откуда μ=F тр /N;

Сила трения по модулю равна силе, направленной параллельно поверхности скольжения, которая требуется для равномерного перемещения бруска с грузом. Реакция опоры по модулю равна весу бруска с грузом. Измерения обоих сил проводятся с помощью школьного динамометра. При перемещении бруска по линейке принципиально достигнуть равномерного его движения, чтоб показания динамометра оставались неизменными и их можно было поточнее найти.

Вес бруска с грузом Р, Н.

Рассчитаем относительную погрешность:

Видно, что большая относительная погрешность будет в опыте с минимальным грузом, т.к. знаменатель меньше.

Рассчитаем абсолютную погрешность.

Приобретенный в итоге опытов коэффициент трения скольжения можно записать как: μ = 0,35 ± 0,05.

Выделите её мышкой и нажмите CTRL ENTER.

Огромное спасибо всем, кто помогает делать веб-сайт лучше! =)

Тезисы

Как отыскать силу трения скольжения f трения формула. Формула силы трения. Она существует всегда, потому что полностью гладких тел не бывает. Отыскать силу трения. Как найти коэффициент трения Коэффициент трения. Находим силу трения. Формула силы трения. Детали автомобилей без смазки Перед тем как найти силу трения , коэффициента трения. Сила трения. Силы трения, как и в почти всех случаях приближенно силу трения скольжения можно. КОЭФФИЦИЕНТ ТРЕНИЯ - это Что такое КОЭФФИЦИЕНТ ТРЕНИЯ? Если обозначить вес предмета как N, а коэффициент ТРЕНИЯ m, покоя определяет силу. Коэффициент трения Эту силу нужно преодолеть различной толщины - как. Лабораторная работа № 3 «Измерение коэффициента трения. ГДЗ к Лабораторная работа № 3 «Измерение коэффициента трения как можно силу трения. Ответы | Лаб. Определение коэффициента трения Как при помощи линейки, силу тяжести в направлениях. Не будь трения - вроде бы мы С учетом коэффициента трения Вычисляем нормальную силу f.

Сила трения – величина, с которой взаимодействуют две поверхности при движении. Она зависит от характеристики тел, направления движения. Благодаря трению скорость тела уменьшается, и вскоре оно останавливается.

Сила трения – направленная величина, независящая от площади опоры и предмета, так как при движении и увеличении площади повышается сила реакции опоры. Эта величина участвует в расчете силы трения. В итоге Fтр=N*m. Здесь N – реакция опоры, а m – коэффициент, который является постоянной величиной, если нет необходимости в очень точных расчетах. При помощи этой формулы можно вычислить силу трения скольжения, которую обязательно стоит учитывать при решении задач, связанных с движением. Если тело вращается на поверхности, то в формулу необходимо включить силу качения. Тогда трение можно найти по формуле Fтркач = f*N/r. Согласно формуле, при вращении тела имеет значение его радиус. Величина f – коэффициент, который можно найти, зная, из какого материала изготовлено тело и поверхность. Это коэффициент, который находится по таблице.

Существуют три силы трения:

  • покоя;
  • скольжения;
  • качения.
Трение покоя не позволяет двигаться предмету, к движению которого не прикладывается усилие. Соответственно гвозди, забитые в деревянную поверхность, не выпадают. Самое интересное, что человек ходит благодаря трению покоя, которое направлено в сторону движения, это является исключением из правил. В идеале при взаимодействии двух абсолютно гладких поверхностей не должно возникать силы трения. На самом деле невозможно, чтобы предмет находился в состоянии покоя или движения без сопротивления поверхностей. Во время движения в жидкости возникает вязкое сопротивление. В отличие от воздушной среды, тело в жидкости не может находиться в состоянии покоя. Оно под воздействием воды начинает движение, соответственно в жидкости не существует трения покоя. Во время перемещения в воде сопротивление движению возникает благодаря разной скорости потоков, окружающих тело. Чтобы снизить сопротивление при перемещении в жидкостях, телу придают обтекаемую форму. В природе для преодоления сопротивления в воде на теле рыб имеется смазка, снижающая трение при движении. Помните, при движении одного тела в жидкостях возникает разное значение сопротивления.


Чтобы снизить сопротивление перемещению предметов в воздухе, телам придают обтекаемую форму. Именно поэтому самолеты изготавливают из гладкой стали с округлым корпусом, зауженным спереди. На трение в жидкости влияет ее температура. Для того чтобы автомобиль во время мороза нормально ездил, его необходимо предварительно разогреть. В результате этого вязкость масла уменьшается, что снижает сопротивление и уменьшает износ деталей. Во время перемещения в жидкости сопротивление может увеличиваться из-за возникновения турбулентных потоков. В таком случае направление движения становится хаотичным. Тогда формула приобретает вид: F=v2*k. Здесь v – скорость, а k – коэффициент, зависящий от свойств тела и жидкости.


Зная физические свойства тел и сопутствующие силы, воздействующие на предмет, вам легко удастся рассчитать силу трения.

Определение

Силой трения называют силу, которая возникает при относительном перемещении (или попытке перемещения) тел и является результатом сопротивления движению окружающей среды или других тел.

Силы трения возникают тогда, когда соприкасающиеся тела (или их части) перемещаются относительно друг друга. При этом трение, которое появляется при относительном перемещении соприкасающихся тел, называют внешним. Трение, возникающее между частями одного сплошного тела (газ, жидкость) названо внутренним.

Сила трения – это вектор, который имеет направление вдоль касательной к трущимся поверхностям (слоям). При этом эта сила направлена в сторону противодействия относительному смещению этих поверхностей (слоев). Так, если два слоя жидкости перемещаются друг по другу, при этом движутся с различными скоростями, то сила, которая приложена к слою, перемещающемуся с большей скоростью, имеет направление в сторону, которая противоположна движению. Сила же, которая воздействует на слой, который движется с меньшей скоростью, направлена по движению.

Виды трения

Трение, которое возникает между поверхностями твердых тел, называют сухим. Оно возникает не только при скольжении поверхностей, но и при попытке вызвать перемещение поверхностей. При этом возникает сила трения покоя. Внешнее трение, которое появляется между движущимися телами, называют кинематическим.

Законы сухого трения говорят о том, что максимальная сила трения покоя и сила трения скольжения не зависят от площади поверхностей соприкосновения соприкасающихся тел, подверженных трению. Эти силы пропорциональны модулю силы нормального давления (N), которая прижимает трущиеся поверхности:

где – безразмерный коэффициент трения (покоя или скольжения). Данный коэффициент зависит от природы и состояния поверхностей трущихся тел, например от наличия шероховатостей. Если трение возникает как результат скольжения, то коэффициент трения является функцией скорости. Довольно часто вместо коэффициента трения применяют угол трения, который равен:

Угол равен минимальному углу наклона плоскости к горизонту, при котором тело, лежащее на этой плоскости, начинает скользить, под воздействие силы тяжести.

Более точным считают закон трения, который принимает во внимание силы притяжения между молекулами тел, которые подвергаются трению:

где S – общая площадь контакта тел, p 0 – добавочное давление, которое вызывается силами молекулярного притяжения, – истинный коэффициент трения.

Трение между твердым телом и жидкостью (или газом) называют вязким (жидким). Сила вязкого трения становится равной нулю, если скорость относительного движения тел обращается в нуль.

При движении тела в жидкости или газе появляются силы сопротивления среды, которые могут стать существенно больше, чем силы трения. Величина силы трения скольжения зависит от формы, размеров и состояния поверхности тела, скорости движения тела относительно среды, вязкости среды. При не очень больших скоростях сила трения вычисляется при помощи формулы:

где знак минус означает, что сила трения имеет направление в сторону противоположную направлению вектора скорости. При увеличении скоростей движения тел в вязкой среде линейный закон (4) переходит в квадратичный:

Коэффициенты и существенно зависимы от формы, размеров, состояния поверхностей тел, вязкости среды.

Помимо этого выделяют трение качения.В первом приближении трение качения рассчитывают, применяя формулу:

где k – коэффициент трения качения, который имеет размерность длины и зависит от материала тел, подверженных контакту и качеств поверхностей и т.д. N – сила нормального давления, r – радиус катящегося тела.

Единицы измерения силы трения

Основной единицей измерения силы трения (как и любой другой силы) в системе СИ является: [P]=H

В СГС: [P]=дин.

Примеры решения задач

Пример

Задание. На горизонтальном диске лежит маленькое тело. Диск вращается вокруг оси, которая проходит через его центр, перпендикулярно плоскости с угловой скоростью . На каком расстоянии от центра диска может находиться в состоянии равновесия тело, если коэффициент трения между диском и телом равен ?

Решение. Изобразим на рис.1 силы, которые будут действовать на тело, положенное на вращающийся диск.

В соответствии со вторым законом Ньютона имеем:

В проекции на ось Yиз уравнения (1.1) получим:

В проекции на ось X имеем:

где ускорение движения маленького тела равно по модуль нормальной составляющей полного ускорения. Силутрения покоя найдем как:

примем во внимание выражение (1.2), тогда имеем:

приравняем правые части выражений (1.3) и (1.5):

где маленькое тело (так как оно находится в состоянии покоя на диске) движется со скоростью, равной.